A134675 Row sums of triangle A134674.
1, 4, 9, 15, 25, 30, 49, 55, 76, 80, 121, 112, 169, 154, 201, 207, 289, 237, 361, 310, 395, 374, 529, 420, 606, 520, 661, 604, 841, 618, 961, 799, 975, 884, 1165, 919, 1369, 1102, 1361, 1202, 1681, 1206, 1849, 1480, 1761, 1610, 2209, 1612, 2360, 1843, 2325, 2062, 2809, 2010, 2897, 2368, 2903, 2552, 3481
Offset: 1
Keywords
Examples
a(4) = 15 = sum of row 4 terms of triangle A134674: (4, + 3 + 4 + 4).
Links
- John Mason, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f1[p_, e_] := p^(2*e) - p^(2*e-2); f2[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f - n; Array[a, 60] (* Amiram Eldar, Aug 22 2023 *)
-
PARI
a(n) = sumdiv(n,d,d^2*moebius(n/d)+d)-n /* Max Alekseyev, Jan 07 2015 */
Formula
For n>1, a(n) = n^2 iff n is prime.
a(n) = A007434(n) + A001065(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Extensions
More terms from John Mason, Jan 07 2015