cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134717 Odd Motzkin numbers.

Original entry on oeis.org

1, 1, 9, 21, 51, 127, 323, 835, 15511, 41835, 853467, 2356779, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 208023278209, 593742784829, 1697385471211, 4859761676391, 13933569346707, 40002464776083, 953467954114363, 2750016719520991, 7939655757745265
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2007

Keywords

Comments

A001006 except A134718. - Vladimir Reshetnikov, Nov 02 2015
The asymptotic density of this sequence within the Motzkin numbers is 2/3. - Amiram Eldar, Aug 26 2024

Crossrefs

Programs

  • Maple
    S:= series(exp(x)*BesselI(1, 2*x)/x, x, 500):
    select(type, [seq(simplify(coeff(S,x,j)*j!), j=0..498)], odd); # Robert Israel, Nov 03 2015
  • Mathematica
    Select[Table[(-1)^n Hypergeometric2F1[3/2, -n, 3, 4], {n, 0, 40}], OddQ] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/ (2*x^2), n); for(n=0, 100, if((m=a001006(n))%2==1, print1(m", "))) \\ Altug Alkan, Nov 03 2015

Formula

a(n) = A001006(A161674(n)). - Amiram Eldar, Aug 26 2024

A135618 Even Motzkin numbers divided by 2.

Original entry on oeis.org

1, 2, 1094, 2899, 56817, 155286, 3268191, 9099642, 12834909238, 36503886401, 57494353262135, 165465534734914, 278352404864419302, 807141068080455861, 19766110689810556002, 57478249717507080819, 1418604378354657012789
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2008

Keywords

References

  • E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.

Crossrefs

Programs

  • Mathematica
    #/2&/@Select[Rest[RecurrenceTable[{a[0]==a[1]==1,a[n]==(3(n-1)a[n-2]+ (2n+1)a[n-1])/(n+2)},a,{n,60}]],EvenQ] (* Harvey P. Dale, Feb 27 2012 *)

Formula

a(n)=A134718(n)/2.
Showing 1-2 of 2 results.