cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134761 a(n) = (1/2)*( (1 + (-1)^n)*A134760(n/2) + (1 - (-1)^n) ).

Original entry on oeis.org

1, 1, 3, 1, 11, 1, 39, 1, 139, 1, 503, 1, 1847, 1, 6863, 1, 25739, 1, 97239, 1, 369511, 1, 1410863, 1, 5408311, 1, 20801199, 1, 80233199, 1, 310235039, 1, 1202160779, 1, 4667212439, 1, 18150270599, 1, 70690527599, 1, 275693057639, 1, 1076515748879, 1, 4208197927439, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 09 2007

Keywords

Comments

Second inverse binomial transform of A134760.
A134760 interpolated with 1's.
Former name: A007318^(-2) * A134760. - G. C. Greubel, May 27 2024

Examples

			The first few terms are (1, 1, 3, 1, 11, 1, 39, ...), since A134760 = (1, 3, 11, 39, 139, 503, ...).
		

Crossrefs

Programs

  • Magma
    A134761:= func< n | (n mod 2 eq 0) select 2*Binomial(2*Floor(n/2), Floor(n/2)) - 1 else 1 >;
    [A134761(n): n in [0..70]]; // G. C. Greubel, May 27 2024
    
  • Mathematica
    Table[If[EvenQ[n], 2*(1+Floor[n/2])*CatalanNumber[Floor[n/2]]-1, 1], {n,0,70}] (* G. C. Greubel, May 27 2024 *)
  • SageMath
    def A134761(n): return 1 if (n%2==0) else 2*binomial(2*(n//2), (n//2)) -1
    [A134761(n) for n in range(71)] # G. C. Greubel, May 27 2024

Formula

From G. C. Greubel, May 27 2024: (Start)
a(n) = (1/2)*( (1 + (-1)^n)*A134760(n/2) + (1 - (-1)^n) ).
G.f.: 2/sqrt(1 - 4*x^2) - 1/(1 + x).
E.g.f.: 2*BesselI(0, 2*x) - exp(-x).
a(n) = (-(n-1)*(3*n-4)*a(n-1) + 4*(3*n^2 -10*n +7)*a(n-2) + 4*(n-2)*(3*n-4)*a(n-3))/(n*(3*n-7)), with a(0) = a(1) = 1, a(2) = 3. (End)

Extensions

New name and terms a(14) onward added by G. C. Greubel, May 27 2024