cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134763 a(n) = (1/2)*( (1+(-1)^n)*A134762(n/2) + 2*(1-(-1)^n) ).

Original entry on oeis.org

1, 2, 4, 2, 16, 2, 58, 2, 208, 2, 754, 2, 2770, 2, 10294, 2, 38608, 2, 145858, 2, 554266, 2, 2116294, 2, 8112466, 2, 31201798, 2, 120349798, 2, 465352558, 2, 1803241168, 2, 7000818658, 2, 27225405898, 2, 106035791398, 2, 413539586458, 2, 1614773623318, 2, 6312296891158, 2
Offset: 0

Views

Author

Gary W. Adamson, Nov 09 2007

Keywords

Comments

Second inverse binomial transform of A134762.
A134762 interpolated with two's.
Former name: A000718^(-2) * A134762. - G. C. Greubel, May 28 2024

Examples

			First few terms of the sequence are: (1, 2, 4, 2, 16, 2, 58, ...), interpolating two's in the sequence A134762: (1, 4, 16, 58, ...).
		

Crossrefs

Programs

  • Magma
    [3*((n+1) mod 2)*Binomial(n, Floor(n/2)) - 2*(-1)^n : n in [0..40]]; // G. C. Greubel, May 28 2024
    
  • Mathematica
    Table[(3/2)*(1+(-1)^n)*Binomial[n,n/2] -2*(-1)^n, {n,0,40}] (* G. C. Greubel, May 28 2024 *)
  • SageMath
    [3*((n+1)%2)*binomial(n, n//2) - 2*(-1)^n for n in range(41)] # G. C. Greubel, May 28 2024

Formula

From G. C. Greubel, May 28 2024: (Start)
a(n) = (1/2)*( (1+(-1)^n)*A134762(n/2) + 2*(1-(-1)^n) ).
a(n) = (3/2)*(1+(-1)^n)*A001405(n) - 2*(-1)^n.
G.f.: 3/sqrt(1-4*x^2) - 2/(1+x).
E.g.f.: 3*BesselI(0, 2*x) - 2*exp(-x). (End)

Extensions

Name change and terms a(14) onward added by G. C. Greubel, May 28 2024