cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134771 A134770 interleaved with threes.

Original entry on oeis.org

1, 3, 5, 3, 21, 3, 77, 3, 277, 3, 1005, 3, 3693, 3, 13725, 3, 51477, 3, 194477, 3, 739021, 3, 2821725, 3, 10816621, 3, 41602397, 3, 160466397, 3, 620470077, 3, 2404321557, 3, 9334424877, 3, 36300541197, 3, 141381055197, 3, 551386115277, 3, 2153031497757, 3
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2007

Keywords

Comments

Previous name was: A007318^(-2) * A134770.
Second inverse binomial transform of A134770.
A134770 interleaved with threes.

Examples

			First few terms of the sequence are (1, 3, 5, 3, 21, 3, 77, ...), since A134770 = (1, 3, 5, 21, 77, ...).
		

Crossrefs

Programs

  • Magma
    A134771:= func< n | (n mod 2) eq 1 select 3 else 2*(n+2)*Catalan(Floor(n/2))-3 >;
    [A134771(n): n in [0..50]]; // G. C. Greubel, Oct 13 2023
    
  • Mathematica
    Table[If[OddQ[n], 3, 4*Binomial[n,n/2] -3], {n,0,50}] (* G. C. Greubel, Oct 13 2023 *)
  • SageMath
    def A134771(n): return 4*((n+1)%2)*binomial(n, n//2) - 3*(-1)^n
    [A134771(n) for n in range(41)] # G. C. Greubel, Oct 13 2023

Formula

From G. C. Greubel, Oct 13 2023: (Start)
a(n) = 2*(1 + (-1)^n)*binomial(n, n/2) - 3*(-1)^n.
G.f.: 2/sqrt(1-4*x^2) - 3/(1+x).
E.g.f.: 4*BesselI(0, 2*x) - 3*exp(-x). (End)

Extensions

Name changed by G. C. Greubel, Oct 13 2023