A134811 Giza primes.
2, 3, 5, 7, 787, 34543, 345676543, 34567876543
Offset: 1
Examples
Illustration using the final term of this sequence: . . . . . . . . . . . . . . . . 8 . . . . . . . . . 7 . 7 . . . . . . . 6 . . . 6 . . . . . 5 . . . . . 5 . . . 4 . . . . . . . 4 . 3 . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References
- Chris K. Caldwell and G. L. Honaker, Jr; Prime Curios!, The Dictionary of Prime Number Trivia, CreateSpace (2009), p. 209.
Links
- G. L. Honaker, Jr. and Chris K. Caldwell, Prime Curios! 34567876543
Programs
-
Mathematica
ups = Flatten[Table[Range[i, j - 1], {i, 1, 9}, {j, i + 1, 10}], 1];afull = Sort[ Map[ToExpression@StringJoin@Map[ToString, #[[;; -2]] ~Join~ Reverse[#]] &, ups]];Select[afull,PrimeQ] (* James C. McMahon, Apr 11 2025 *)
Formula
Extensions
Reference and link added by Omar E. Pol, Mar 25 2011
Comments