cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134830 Triangle of rank k of permutations of {1,2,...,n}.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 1, 1, 2, 6, 4, 3, 2, 9, 24, 18, 14, 11, 9, 44, 120, 96, 78, 64, 53, 44, 265, 720, 600, 504, 426, 362, 309, 265, 1854, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 14833, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833
Offset: 0

Views

Author

Wolfdieter Lang, Jan 21 2008

Keywords

Comments

The rank k of a permutation of n elements is the first position of a fixed point. If there is no fixed point then k=n+1 and R(n,n+1)=A000166(n), the derangements numbers (subfactorials).

Examples

			Triangle begins:
  [1];
  [1,0];
  [1,0,1];
  [2,1,1,2];
  [6,4,3,2,9];
  [24,18,14,11,9,44];
  ...
R(4,2)=4 from the four rank k=2 partitions of 4 elements (3,2,1,4), (3,2,4,1), (4,2,1,3) and (4,2,3,1).
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3 (without row n=0 and column k=1), p. 185.

Crossrefs

Row sums n!=A000142(n). Alternating row sums A134831.

Formula

R(n,k)=0 if n+1=0, with D(n):=A000166(n) the derangements numbers (subfactorials), R(n,k)=sum((-1)^j*binomial(k-1,j)*(n-j-1)!,j=0..k-1), k from 1,..,n.
Subtriangle without diagonal k=n+1: R(n,k)=sum(binomial(n-k,j)*D(k+j-1),j=0..n-k), k=1,...,n, n>=1, with D(n):=A000166(n).
R(n,k) = R(n,k-1) - R(n-1,k-1), R(0,0)=1, R(n,1)=(n-1)!.