A134832 Triangle of succession numbers for circular permutations.
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 4, 0, 0, 1, 8, 5, 10, 0, 0, 1, 36, 48, 15, 20, 0, 0, 1, 229, 252, 168, 35, 35, 0, 0, 1, 1625, 1832, 1008, 448, 70, 56, 0, 0, 1, 13208, 14625, 8244, 3024, 1008, 126, 84, 0, 0, 1, 120288, 132080, 73125, 27480, 7560, 2016, 210, 120, 0, 0, 1
Offset: 0
Examples
Triangle begins: [1]; [0,1]; [0,0,1]; [1,0,0,1]; [1,4,0,0,1]; ... Recurrence: 15=a(6,2) = (6/2)*a(5,1)=3*5 (from Sheffer a-sequence). Recurrence: 36=a(6,0)=6*(0+0+(1/3)*10+0+0+(8/3)*1) =6*6 (from Sheffer z-sequence).
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15).
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469 [cs.DM], 2016.
- Wolfdieter Lang, First 10 rows and more.
Programs
-
Mathematica
A000757[n_] := (-1)^n + Sum[(-1)^k*n!/((n-k)*k!), {k, 0, n-1}]; a[n_, n_] = 1; a[n_, 0] := A000757[n]; a[n_, k_] := a[n, k] = n/k*a[n-1, k-1]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
Formula
a(n,k) = binomial(n,k)*a(n-k,0), k>=1 with a(n-k,0):=A000757(n), n>=0.
E.g.f. column k: ((1-log(1-x))/e^x)*(x^k)/k!, k>=0 (from the Sheffer property).
Recurrence a(n,k) = (n/k)*a(n-1,k-1), n >= k >= 1, (from the Sheffer a-sequences [1,0,0,...] due to the Appell type).
Recurrence a(n,0) = n*sum(z(j)*a(n-1,j),j=0..n-1), n>=1; a(0,0):=1, with the Sheffer z-sequence z(j):= A135808(j).
Comments