A135799
Second column (k=1) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 4, 5, 48, 252, 1832, 14625, 132080, 1323168, 14576076, 175108661, 2278429216, 31920719820, 479088848976, 7669098865441, 130426934203296, 2348478878321248, 44633950190867220, 892899715052136645
Offset: 0
a(3)=4 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4, 3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1, 1 and 1 successor pair(s), respectively.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=1.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 1], {n, 21}] (* Michael De Vlieger, Jan 09 2016, after Jean-François Alcover at A134832 *)
A135802
Fifth column (k=4) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 35, 70, 1008, 7560, 75570, 804375, 9443720, 120408288, 1658028645, 24515212540, 387332966720, 6511826843280, 116059273664436, 2185693176650685, 43366955622595920, 904164368153680480
Offset: 0
a(0)=1 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1,1 and 1 successor pair, respectively. Hence (1,2,3,4) is the only circular permutation with 4 successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=4.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 4], {n, 4, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135803
Sixth column (k=5) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 56, 126, 2016, 16632, 181368, 2091375, 26442416, 361224864, 5305691664, 83351722636, 1394398680192, 24744942004464, 464237094657744, 9179911341932877, 190814604739422048, 4159156093506930208
Offset: 0
a(0)=1 because from the 5!/5 = 24 circular permutations of n=5 elements only one, namely (1,2,3,4,5), has five successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=5.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 5], {n, 5, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135804
Seventh column (k=6) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 84, 210, 3696, 33264, 392964, 4879875, 66106040, 963266304, 15032793048, 250055167908, 4415595820608, 82483140014880, 1624829831302104, 33659674920420549, 731455984834451184, 16636624374027720832
Offset: 0
a(0)=1 because from the 6!/6 = 120 circular permutations of n=6 elements only one, namely (1,2,3,4,5,6), has six successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=6.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 6], {n, 6, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135805
Eighth column (k=7) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 120, 330, 6336, 61776, 785928, 10456875, 151099520, 2339361024, 38655753552, 678721170036, 12615988058880, 247449420044640, 5106608041235184, 110596074738524661, 2507849090860975488
Offset: 0
a(0)=1 because from the 7!/7 = 720 circular permutations of n=7 elements only one, namely (1,2,3,4,5,6,7), has seven successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=7.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 7], {n, 7, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135806
Ninth column (k=8) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 165, 495, 10296, 108108, 1473615, 20913750, 321086480, 5263562304, 91807414686, 1696802925090, 33116968654560, 680485905122760, 14681498118551154, 331788224215573983, 7837028408940548400
Offset: 0
a(0)=1 because from the 8!/8 = 5040 circular permutations of n=8 elements only one, namely (1,2,3,4,5,6,7,8), has eight successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=8.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 8], {n, 8, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135808
Numerator of z-sequence for the Sheffer (Appell type) triangle A134832 (circular succession numbers).
Original entry on oeis.org
0, 0, 1, 1, 8, 8, 159, 659, 6824, 4668, 517581, 4941685, 61043344, 367628164, 10269016939, 147207286503, 2322683458544, 19149119743336, 677630804946393, 2516289402924117, 247342217288517496, 2548438247219028464
Offset: 0
Rationals r(n)=[0,0,1/3, 1/4, 8/5, 8/3, 159/7, 659/8, 6824/9, 4668, 517581/11,...].
A134515
Third column (k=2) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 10, 15, 168, 1008, 8244, 73125, 726440, 7939008, 94744494, 1225760627, 17088219120, 255365758560, 4072255216296, 69021889788969, 1239055874931312, 23484788783212480, 468656477004105810, 9821896865573503095
Offset: 0
a(2)=0 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1,1 and 1 successor pair, respectively.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=2.
A134833
Alternating row sums of triangle A134832.
Original entry on oeis.org
1, -1, 1, 0, -2, 12, -16, 144, 368, 4768, 39488, 412288, 4577280, 55671808, 731390976, 10335518720, 156303439872, 2518984822784, 43099089166336, 780268880543744, 14902336357040128, 299452809649520640, 6315501510334480384, 139485953831272710144, 3219718099932104622080
Offset: 0
-
A000757[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := A000757[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[Sum[a[n, k]*(-1)^k, {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, Nov 10 2016 *)
A135801
Fourth column (k=3) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 20, 35, 448, 3024, 27480, 268125, 2905760, 34402368, 442140972, 6128803135, 91137168640, 1447072631840, 24433531297776, 437138635330137, 8260372499542080, 164393521482487360, 3436814164696775940
Offset: 0
a(1)=0 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1,1 and 1 successor pair, respectively.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=3.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 3], {n, 3, 10}] (* G. C. Greubel, Nov 10 2016 *)
Showing 1-10 of 12 results.
Comments