A134859 Wythoff AAA numbers.
1, 6, 9, 14, 19, 22, 27, 30, 35, 40, 43, 48, 53, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 108, 111, 116, 119, 124, 129, 132, 137, 142, 145, 150, 153, 158, 163, 166, 171, 174, 179, 184, 187, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242
Offset: 1
Keywords
Examples
Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math. 24 (2010), no. 2, 570-588.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), Article 15.11.8.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008), Article 08.3.3.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See pp. 5-6.
Crossrefs
Cf. A001622, A000201, A001950, A003622, A003623, A035336, A098317, A101864, A134860, A035337, A134861, A134862, A134863, A035338, A134864, A035513.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Essentially the same as A095098.
Programs
-
Maple
# For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
-
Mathematica
A[n_] := Floor[n GoldenRatio]; a[n_] := A@ A@ A@ n; a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
-
Python
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
-
Python
from math import isqrt def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022
Formula
a(n) = A(A(A(n))), n >= 1, with A=A000201, the lower Wythoff sequence.
a(n) = 2*floor(n*Phi^2) - n - 2 where Phi = (1+sqrt(5))/2. - Benoit Cloitre, Apr 12 2008; R. J. Mathar, Oct 16 2009
a(n) = A095098(n-1), n > 1. - R. J. Mathar, Oct 16 2009
From A.H.M. Smeets, Mar 23 2024: (Start)
Extensions
Incorrect PARI program removed by R. J. Mathar, Oct 16 2009
Comments