cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134866 Table read by antidiagonals: T(n,k) = sigma(gcd(n,k)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 3, 1, 3, 6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 7, 1, 12, 1, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 8, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Comments

Previous name was: Triangle, antidiagonals of an array formed by A051731 * A127093 (transform).
Row sums give A094471.

Examples

			First few rows of the array:
  1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 3, 1, 3, 1, ...
  1, 1, 4, 1, 1, 4, 1, ...
  1, 3, 1, 7, 1, 3, 1, ...
  1, 1, 1, 1, 6, 1, 1, ...
  ...
First antidiagonals:
  1;
  1, 1;
  1, 3, 1;
  1, 1, 1, 1;
  1, 3, 4, 3, 1;
  1, 1, 1, 1, 1, 1;
  1, 3, 1, 7, 1, 3, 1;
  1, 1, 4, 1, 1, 4, 1, 1;
  1, 3, 1, 3, 6, 3, 1, 3, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, GCD[#, k]] &[n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 19 2022 *)
  • PARI
    T(n, k) = sigma(gcd(n, k)); \\ Michel Marcus, Dec 19 2022

Formula

T(n,k) = A000203(A050873(n,k)). - Michel Marcus, Dec 19 2022

Extensions

New name and data corrected by Michel Marcus, Dec 19 2022