A134866 Table read by antidiagonals: T(n,k) = sigma(gcd(n,k)).
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 3, 1, 3, 6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 7, 1, 12, 1, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 8, 3, 1, 3, 1, 3, 1
Offset: 1
Examples
First few rows of the array: 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 1, 3, 1, 3, 1, ... 1, 1, 4, 1, 1, 4, 1, ... 1, 3, 1, 7, 1, 3, 1, ... 1, 1, 1, 1, 6, 1, 1, ... ... First antidiagonals: 1; 1, 1; 1, 3, 1; 1, 1, 1, 1; 1, 3, 4, 3, 1; 1, 1, 1, 1, 1, 1; 1, 3, 1, 7, 1, 3, 1; 1, 1, 4, 1, 1, 4, 1, 1; 1, 3, 1, 3, 6, 3, 1, 3, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
Programs
-
Mathematica
Table[DivisorSigma[1, GCD[#, k]] &[n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 19 2022 *)
-
PARI
T(n, k) = sigma(gcd(n, k)); \\ Michel Marcus, Dec 19 2022
Formula
Extensions
New name and data corrected by Michel Marcus, Dec 19 2022
Comments