A134867 A010766 * A000012.
1, 3, 1, 5, 2, 1, 8, 4, 2, 1, 10, 5, 3, 2, 1, 14, 8, 5, 3, 2, 1, 16, 9, 6, 4, 3, 2, 1, 20, 12, 8, 6, 4, 3, 2, 1, 23, 14, 10, 7, 5, 4, 3, 2, 1, 27, 17, 12, 9, 7, 5, 4, 3, 2, 1, 29, 18, 13, 10, 8, 6, 5, 4, 3, 2, 1, 35, 23, 17, 13, 10, 8, 6, 5, 4, 3, 2, 1, 37, 24, 18, 14, 11, 9, 7, 6, 5, 4, 3, 2, 1
Offset: 1
Examples
First few rows of the triangle: 1; 3, 1; 5, 2, 1; 8, 4, 2, 1; 10, 5, 3, 2, 1; 14, 8, 5, 3, 2, 1; 16, 9, 6, 4, 3, 2, 1; 20, 12, 8, 6, 4, 3, 2, 1; 23, 14, 10, 7, 5, 4, 3, 2, 1; 27, 17, 12, 9, 7, 5, 4, 3, 2, 1; ...
Crossrefs
Programs
-
Mathematica
t = Table[Sum[Floor[n/h], {h, k, n}], {n, 0, 10}, {k, 1, n}]; u = Flatten[t] (* A134867 array *) TableForm[t] (* A134867 sequence *) (* Clark Kimberling, Oct 11 2014 *)
-
PARI
T(n, k) = sum(j=k, n, n\j); \\ Seiichi Manyama, Oct 30 2023
Formula
Triangle read by rows, partial row sums of A010766 starting fromt the right.
G.f. of column k: 1/(1-x) * Sum_{j>=1} x^(k*j)/(1-x^j) = 1/(1-x) * Sum_{j>=k} x^j/(1-x^j). - Seiichi Manyama, Oct 30 2023
Extensions
More terms from Seiichi Manyama, Oct 30 2023