A134928 Triple composites.
4, 6, 8, 10, 12, 14, 16, 18, 20, 28, 30, 32, 40, 42, 44, 58, 60, 62, 70, 72, 74, 100, 102, 104, 106, 108, 110, 136, 138, 140, 148, 150, 152, 178, 180, 182, 190, 192, 194, 196, 198, 200, 226, 228, 230, 238, 240, 242, 268, 270, 272, 280, 282, 284
Offset: 1
Examples
28, 30 and 32 are triple composites because 29 and 31 are twin primes and 28, 30 and 32 are composites and nearest-neighbors of 29 and 31.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Omar E. Pol, Determinacion geometrica de los numeros primos y compuesto.
Programs
-
Mathematica
#[[1]]+{-1,1,3}&/@Select[Partition[Prime[Range[3,100]],2,1],#[[2]]-#[[1]]==2&]//Flatten (* Harvey P. Dale, Jun 09 2023 *) Flatten[{#[[1]],#[[1]]+2,#[[2]]}&/@SequencePosition[Table[Which[CompositeQ[ n],1,PrimeQ[ n],2,True,0],{n,300}],{1,2,1,2,1}]] (* Harvey P. Dale, Sep 07 2023 *)
Comments