A134957 Number of hyperforests with n unlabeled vertices: analog of A134955 when edges of size 1 are allowed (with no two equal edges).
1, 2, 6, 20, 75, 310, 1422, 7094, 37877, 213610, 1256422, 7641700, 47735075, 304766742, 1981348605, 13079643892, 87480944764, 591771554768, 4042991170169, 27864757592632, 193549452132550, 1353816898675732, 9529263306483357, 67457934248821368, 480019516988969011
Offset: 0
Keywords
Examples
From _Gus Wiseman_, May 20 2018: (Start) Non-isomorphic representatives of the a(3) = 20 hyperforests are the following: {} {{1}} {{1,2}} {{1,2,3}} {{1},{2}} {{1},{2,3}} {{2},{1,2}} {{3},{1,2,3}} {{1,3},{2,3}} {{1},{2},{3}} {{1},{2},{1,2}} {{1},{3},{2,3}} {{2},{3},{1,2,3}} {{2},{1,3},{2,3}} {{3},{1,3},{2,3}} {{1,2},{1,3},{2,3}} {{1},{2},{3},{2,3}} {{1},{2},{3},{1,2,3}} {{1},{2},{1,3},{2,3}} {{2},{3},{1,3},{2,3}} {{3},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,3},{2,3}} {{2},{3},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3},{2,3}} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]]; ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v]; b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v]; seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]]; seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
-
PARI
\\ here b(n) is A318494 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v} seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018
Formula
Euler transform of A134959. - Gus Wiseman, May 20 2018
Extensions
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018