cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134971 Canyon primes.

Original entry on oeis.org

101, 313, 727, 757, 919, 929, 3023, 3203, 7027, 7057, 7127, 7207, 7237, 7247, 7307, 7417, 7457, 7507, 7517, 7537, 7547, 7607, 9029, 9049, 9059, 9109, 9209, 9239, 9319, 9349, 9419, 9439, 9479, 9539, 9619, 9629, 9649, 9679, 9689, 9719, 9739, 9749, 9769, 9829
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Comments

Intersection of prime numbers and Canyon numbers ("Canyon primes"). This sequence is finite because A134970 is. There are 9237 Canyon primes (compare to 116505 Canyon numbers total). The largest Canyon prime (and last element of this sequence) is a(9237) = 98765432101456789.

Examples

			Illustration of 751367 as a Canyon prime:
. . . . . .
. . . . . .
7 . . . . 7
. . . . 6 .
. 5 . . . .
. . . . . .
. . . 3 . .
. . . . . .
. . 1 . . .
. . . . . .
		

Crossrefs

Cf. A000040, A134951, Primes in A134970.

Programs

  • Mathematica
    S = {}; c = 1;
    For[n = 1, n <= 9, n++,
      L = 2 n - 1;
      d = Join[Reverse[Range[1, n - 1]], Range[0, n - 1]];
      If[Mod[n, 2] != 0 && n != 5,
       For[j = 1, j < 2^L, j++,
         Dig = d[[Map[#[[1]] &, Position[IntegerDigits[j, 2, L], 1]]]];
         min = Min[Dig];
         If[Length[Position[Dig, min]] == 1,
          p = FromDigits[Join[{n}, Dig, {n}]];
          If[PrimeQ[p], S = Append[S, p]];
          ];
         ];
       ];
      ]; (* Kellen Myers, Jan 18 2011 *)
  • Python
    from sympy import isprime
    from itertools import chain, combinations as combs
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    afull = sorted(filter(isprime, (int("".join(map(str, t))) for t in s if t[0] == t[-1])))
    print(afull[:44]) # Michael S. Branicky, Jan 16 2023

Formula

A000040 INTERSECT A134970.

Extensions

All terms past 3203, more comments, etc. by Kellen Myers, Jan 18 2011