A134971 Canyon primes.
101, 313, 727, 757, 919, 929, 3023, 3203, 7027, 7057, 7127, 7207, 7237, 7247, 7307, 7417, 7457, 7507, 7517, 7537, 7547, 7607, 9029, 9049, 9059, 9109, 9209, 9239, 9319, 9349, 9419, 9439, 9479, 9539, 9619, 9629, 9649, 9679, 9689, 9719, 9739, 9749, 9769, 9829
Offset: 1
Examples
Illustration of 751367 as a Canyon prime: . . . . . . . . . . . . 7 . . . . 7 . . . . 6 . . 5 . . . . . . . . . . . . . 3 . . . . . . . . . . 1 . . . . . . . . .
Links
- Kellen Myers, Table of n, a(n) for n = 1..9237
Programs
-
Mathematica
S = {}; c = 1; For[n = 1, n <= 9, n++, L = 2 n - 1; d = Join[Reverse[Range[1, n - 1]], Range[0, n - 1]]; If[Mod[n, 2] != 0 && n != 5, For[j = 1, j < 2^L, j++, Dig = d[[Map[#[[1]] &, Position[IntegerDigits[j, 2, L], 1]]]]; min = Min[Dig]; If[Length[Position[Dig, min]] == 1, p = FromDigits[Join[{n}, Dig, {n}]]; If[PrimeQ[p], S = Append[S, p]]; ]; ]; ]; ]; (* Kellen Myers, Jan 18 2011 *)
-
Python
from sympy import isprime from itertools import chain, combinations as combs ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11))) s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0]) afull = sorted(filter(isprime, (int("".join(map(str, t))) for t in s if t[0] == t[-1]))) print(afull[:44]) # Michael S. Branicky, Jan 16 2023
Extensions
All terms past 3203, more comments, etc. by Kellen Myers, Jan 18 2011
Comments