A134979 Triangle read by rows: T(n,k) = number of partitions of n where the maximum number of objects in partitions of any given size is k.
1, 0, 2, 0, 1, 2, 0, 1, 1, 3, 0, 0, 3, 2, 2, 0, 0, 2, 4, 1, 4, 0, 0, 1, 6, 3, 3, 2, 0, 0, 1, 6, 4, 6, 1, 4, 0, 0, 0, 6, 7, 8, 3, 3, 3, 0, 0, 0, 5, 7, 14, 4, 6, 2, 4, 0, 0, 0, 5, 7, 18, 7, 9, 5, 3, 2, 0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6, 0, 0, 0, 2, 9, 26, 15, 19, 11, 9, 3, 5, 2
Offset: 1
Examples
For the partition [3,2^2], there are 3 objects in the part of size 3 and 4 objects in the parts of size 2, so this partition is counted towards T(7,4). Triangle T(n,k) begins: 1; 0, 2; 0, 1, 2; 0, 1, 1, 3; 0, 0, 3, 2, 2; 0, 0, 2, 4, 1, 4; 0, 0, 1, 6, 3, 3, 2; 0, 0, 1, 6, 4, 6, 1, 4; 0, 0, 0, 6, 7, 8, 3, 3, 3; 0, 0, 0, 5, 7, 14, 4, 6, 2, 4; 0, 0, 0, 5, 7, 18, 7, 9, 5, 3, 2; 0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, m) option remember; `if`(n=0 or i=1, x^ max(m, n), add(b(n-i*j, i-1, max(m, i*j)), j=0..n/i)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2, 0)): seq(T(n), n=1..20); # Alois P. Heinz, Feb 07 2020
-
Mathematica
b[n_, i_, m_] := b[n, i, m] = If[n == 0 || i == 1, x^Max[m, n], Sum[b[n - i j, i - 1, Max[m, i j]], {j, 0, n/i}]]; T[n_] := Table[Coefficient[b[n, n, 0], x, i], {i, 1, n}]; Array[T, 20] // Flatten (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
Comments