cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134988 Number of formal expressions obtained by applying iterated binary brackets to n indexed symbols x_1, ..., x_n such that: 1) each symbol appears exactly once; 2) the smallest index inside a bracket appears on the left hand side and the largest index appears on the right hand side; 3) the outer bracket is the only bracket whose set of indices is a sequence of consecutive integers.

Original entry on oeis.org

1, 0, 1, 4, 22, 144, 1089, 9308, 88562, 927584, 10603178, 131368648, 1753970380, 25112732512, 383925637137, 6243618722124, 107644162715098, 1961478594977856, 37671587406585006, 760654555198989240, 16110333600696417780, 357148428086308848480, 8271374327887650503130
Offset: 2

Views

Author

Paolo Salvatore and Roberto Tauraso, Feb 05 2008, Feb 22 2008

Keywords

Comments

a(n) is the number of generators in arity n of the operad Lie, when considered as a free non-symmetric operad.

Crossrefs

Cf. A075834.

Programs

  • Mathematica
    terms = 23; F[x_] = Sum[n! x^n, {n, 0, terms+1}]; CoefficientList[(x - InverseSeries[Series[x F[x], {x, 0, terms+1}], x])/x^2, x] (* Jean-François Alcover, Feb 17 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    F = sum(n=0,N,x^n*n!);
    gf= x - serreverse(x*F);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */

Formula

a(2) = 1, a(n) = Sum_{k=2..n-2} ((k+1)*a(k+1) + a(k))*a(n-k), n > 2;
G.f.: x - series_reversion(x*F(x)), where F(x) is the g.f. of the factorials (A000142).
a(n) = (1/e)*(1 - 3/n - 5/(2n^2) + O(1/n^3)).