cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134989 Numbers expressible in more than one way as 6^x-y^2.

Original entry on oeis.org

0, 20, 32, 95, 207, 720, 1152, 1215, 1287, 3420, 3807, 6255, 6407, 7452, 7767, 18095, 23247, 25920, 41472, 43740, 46332, 46647, 69255, 123120, 137052, 174087, 211815, 217935, 225180, 230652, 268272, 279612, 279927, 651420, 836892, 933120, 1416447
Offset: 1

Views

Author

Zak Seidov, Feb 05 2008

Keywords

Comments

Numbers n such that equation 6^x-y^2=n has more than one solution.

Examples

			0=6^(2k)-(6^k)^2, k=1,2,..
20=6^2-4^2=6^3-14^2,
32=6^2-2^2=6^5-88^2,
95=6^3-11^2=6^7-529^2,
207=6^3-3^2=6^4-33^2=6^5-87^2,
720=6^4-24^2=6^5-84^2,
1152=6^4-12^2=6^7-528^2,
1215=6^4-9^2=6^5-81^2,
1287=6^4-3^2=6^6-213^2.
		

Crossrefs

Cf. A051217.

Programs

  • Mathematica
    lst = {}; Do[ t = 6^x - y^2; If[t < 10^7/7, AppendTo[lst, t]], {x, 185}, {y, (a = Floor@Sqrt[6^x - 10^7]; If[Element[a, Reals], a, 0]), Floor@Sqrt[6^x]}]; lst = Sort@lst; lsu = {}; Do[ If[lst[[n]] == lst[[n + 1]], AppendTo[lsu, lst[[n]]]], {n, -1 + Length@lst}]; Union@lsu (* Robert G. Wilson v, Feb 09 2008 *)

Extensions

More terms from Robert G. Wilson v, Feb 09 2008