cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153505 Decimal expansion of (e*gamma*Pi*phi)/4, where gamma is the Euler-Mascheroni constant and phi is the golden ratio.

Original entry on oeis.org

1, 9, 9, 3, 9, 3, 0, 9, 3, 9, 5, 3, 9, 9, 8, 8, 4, 2, 8, 0, 2, 2, 8, 4, 0, 9, 8, 4, 0, 9, 5, 5, 5, 7, 0, 0, 9, 7, 0, 8, 6, 7, 2, 2, 8, 1, 4, 1, 1, 5, 4, 1, 7, 4, 5, 5, 9, 1, 5, 3, 2, 0, 6, 3, 6, 9, 9, 9, 0, 2, 0, 8, 7, 6, 5, 4, 9, 0, 6, 1, 8, 4, 0, 4, 2, 8, 6, 9, 0, 5, 8, 0, 5, 3, 4, 6, 8, 1, 6, 1, 4, 6, 8, 4, 4, 5, 1, 7, 6, 3, 6, 9, 7, 5, 1, 3, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2008

Keywords

Examples

			1.9939309... - _Omar E. Pol_, Dec 31 2008
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E*EulerGamma*Pi*GoldenRatio/4, 10, 50][[1]] (* G. C. Greubel, Aug 17 2016 *)

Formula

Equals A135000/4. - R. J. Mathar, Jan 22 2009

Extensions

Added more digits. - R. J. Mathar, Jan 22 2009

A153506 Decimal expansion of (e+gamma+Pi+phi)/4, where gamma is the Euler-Mascheroni constant and phi is the golden ratio.

Original entry on oeis.org

2, 0, 1, 3, 7, 8, 1, 0, 3, 3, 9, 2, 5, 0, 6, 6, 5, 4, 5, 6, 5, 8, 5, 0, 7, 4, 4, 4, 7, 7, 0, 0, 5, 1, 4, 8, 2, 6, 7, 9, 2, 2, 1, 2, 5, 2, 2, 0, 5, 1, 8, 7, 9, 6, 4, 2, 2, 0, 7, 8, 2, 0, 1, 9, 4, 0, 5, 5, 0, 5, 3, 0, 6, 5, 5, 9, 0, 8, 0, 9, 2, 8, 4, 6, 0, 8, 9, 2, 8, 1, 7, 8, 3, 7, 1, 0, 5, 3, 4, 5, 6, 0, 2, 2, 5
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2008

Keywords

Examples

			2.01378103392506654565850744477005148267922125220518796422...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); phi:=(1+ Sqrt(5))/2; (Exp(1) + EulerGamma(R) + Pi(R) + phi)/4; // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[(E + EulerGamma + Pi + GoldenRatio)/4, 10, 50][[1]] (* G. C. Greubel, Aug 17 2016 *)
  • PARI
    default(realprecision, 100); phi=(1+sqrt(5))/2; (exp(1) + Euler + Pi + phi)/4 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals A003881+A019741+A134944+A001620/4. - R. J. Mathar, Jan 25 2009

Extensions

More digits from R. J. Mathar, Jan 22 2009
Showing 1-2 of 2 results.