cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135025 Let b(1) = 2; and for n>= 2, if b(n-1) < prime(n) then b(n) = b(n-1) + prime(n) otherwise b(n) = b(n-1) - prime(n). The sequence gives the indices n where b(n-1) < b(n) < b(n+1).

Original entry on oeis.org

4, 9, 22, 57, 146, 367, 946, 2507, 6634, 17777, 48522, 133107, 369020, 1028405, 2880288, 8100949, 22877146, 64823569, 184274932, 525282741, 1501215194, 4299836187, 12340952050, 35486796313, 102220582466, 294917666855, 852123981582, 2465458792769
Offset: 1

Views

Author

Lior Deutsch (liorde(AT)gmail.com), Feb 10 2008

Keywords

Comments

The b sequence, prefixed by 0, is A008348. The low points in b are 1 less than the terms of the present sequence, and are given in A309226. - N. J. A. Sloane, Aug 31 2019

Examples

			b(1) = 2
b(2) = 5
b(3) = 0
b(4) = 7
b(5) = 18
b(3) < b(4) < b(5), so 4 is the first term of the sequence.
		

Crossrefs

Programs

  • Maple
    B := proc(n) option remember ; if n = 1 then 2; else if procname(n-1)-ithprime(n) < 0 then procname(n-1)+ithprime(n) ; else procname(n-1)-ithprime(n) ; fi; fi; end: A135025 := proc(n) option remember ; if n = 1 then 4; else for a from procname(n-1)+1 do if B(a-1) < B(a) and B(a) < B(a+1) then RETURN(a) ; fi; od: fi; end: for n from 1 do printf("%d,\n",A135025(n)) ; od: # R. J. Mathar, Feb 06 2009
  • Mathematica
    B[n_] := B[n] = If[n == 1, 2, If[B[n-1] - Prime[n] < 0, B[n-1] + Prime[n], B[n-1] - Prime[n]]];
    a[n_] := a[n] = If[n == 1, 4, For[k = a[n-1]+1, True, k++, If[B[k-1] < B[k] && B[k] < B[k+1], Return[k]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 16 2022, after R. J. Mathar *)

Extensions

New term added by Lior Deutsch (liorde(AT)gmail.com), Oct 17 2008
Definition corrected and entry revised by Robert Israel, Michel Marcus, and N. J. A. Sloane, Sep 29 2014
a(17)-a(28) from Giovanni Resta, Oct 02 2019