A135025 Let b(1) = 2; and for n>= 2, if b(n-1) < prime(n) then b(n) = b(n-1) + prime(n) otherwise b(n) = b(n-1) - prime(n). The sequence gives the indices n where b(n-1) < b(n) < b(n+1).
4, 9, 22, 57, 146, 367, 946, 2507, 6634, 17777, 48522, 133107, 369020, 1028405, 2880288, 8100949, 22877146, 64823569, 184274932, 525282741, 1501215194, 4299836187, 12340952050, 35486796313, 102220582466, 294917666855, 852123981582, 2465458792769
Offset: 1
Examples
b(1) = 2 b(2) = 5 b(3) = 0 b(4) = 7 b(5) = 18 b(3) < b(4) < b(5), so 4 is the first term of the sequence.
Programs
-
Maple
B := proc(n) option remember ; if n = 1 then 2; else if procname(n-1)-ithprime(n) < 0 then procname(n-1)+ithprime(n) ; else procname(n-1)-ithprime(n) ; fi; fi; end: A135025 := proc(n) option remember ; if n = 1 then 4; else for a from procname(n-1)+1 do if B(a-1) < B(a) and B(a) < B(a+1) then RETURN(a) ; fi; od: fi; end: for n from 1 do printf("%d,\n",A135025(n)) ; od: # R. J. Mathar, Feb 06 2009
-
Mathematica
B[n_] := B[n] = If[n == 1, 2, If[B[n-1] - Prime[n] < 0, B[n-1] + Prime[n], B[n-1] - Prime[n]]]; a[n_] := a[n] = If[n == 1, 4, For[k = a[n-1]+1, True, k++, If[B[k-1] < B[k] && B[k] < B[k+1], Return[k]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 16 2022, after R. J. Mathar *)
Extensions
New term added by Lior Deutsch (liorde(AT)gmail.com), Oct 17 2008
Definition corrected and entry revised by Robert Israel, Michel Marcus, and N. J. A. Sloane, Sep 29 2014
a(17)-a(28) from Giovanni Resta, Oct 02 2019
Comments