A135080 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of x+x^2 (cf. A122888).
1, 1, 1, 2, 2, 1, 8, 7, 3, 1, 50, 40, 15, 4, 1, 436, 326, 112, 26, 5, 1, 4912, 3492, 1128, 240, 40, 6, 1, 68098, 46558, 14373, 2881, 440, 57, 7, 1, 1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1, 21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 2, 1; 8, 7, 3, 1; 50, 40, 15, 4, 1; 436, 326, 112, 26, 5, 1; 4912, 3492, 1128, 240, 40, 6, 1; 68098, 46558, 14373, 2881, 440, 57, 7, 1; 1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1; 21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100, 9, 1; ... Coefficients in iterations of (x+x^2) form table A122888: 1; 1, 1; 1, 2, 2, 1; 1, 3, 6, 9, 10, 8, 4, 1; 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1; 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...; 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ... This triangle T transforms one diagonal in the above table into another; start with the main diagonal of A122888, A112319, which begins: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...]; then the transform T*A112319 equals A112317, which begins: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, ...]; and the transform T*A112317 equals A112320, which begins: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
Links
- Paul D. Hanna, Table of n, a(n) for n=0..495 (rows 0..30)
Crossrefs
Programs
-
PARI
{T(n,k)=local(F=x,M,N,P,m=max(n,k)); M=matrix(m+2,m+2,r,c,F=x;for(i=1,r+c-2,F=subst(F,x,x+x^2+x*O(x^(m+2))));polcoeff(F,c)); N=matrix(m+1,m+1,r,c,M[r,c]);P=matrix(m+1,m+1,r,c,M[r+1,c]);(P~*N~^-1)[n+1,k+1]}
-
PARI
/* Generate by method given in A187005, A187115, A187120 (faster): */ {T(n,k)=local(Ck=x);for(m=1,n-k+1,Ck=(1/x^k)*subst(truncate(x^k*Ck),x,x+x^2 +x*O(x^m)));polcoeff(Ck,n-k+1,x)}
Formula
Extensions
Added cross-reference; example corrected and name changed by Paul D. Hanna, Feb 04 2011