A135087 Triangle T(n, k) = 2*A134058(n, k) - 1, read by rows.
1, 3, 3, 3, 7, 3, 3, 11, 11, 3, 3, 15, 23, 15, 3, 3, 19, 39, 39, 19, 3, 3, 23, 59, 79, 59, 23, 3, 3, 27, 83, 139, 139, 83, 27, 3, 3, 31, 111, 223, 279, 223, 111, 31, 3, 3, 35, 143, 335, 503, 503, 335, 143, 35, 3
Offset: 0
Examples
First few rows of the triangle are: 1; 3, 3; 3, 7, 3; 3, 11, 11, 3; 3, 15, 23, 15, 3; 3, 19, 39, 39, 19, 3; 3, 23, 59, 79, 59, 23, 3; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[1] cat [4*Binomial(n,k) -1: k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
-
Mathematica
Table[4*Binomial[n, k] -2*Boole[n==0] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
-
Sage
def A135087(n,k): return 4*binomial(n,k) -2*bool(n==0) -1 flatten([[A135087(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
Formula
T(n, k) = 2*A134058(n, k) - 1.
From G. C. Greubel, May 03 2021: (Start)
T(n, k) = 4*binomial(n, k) - 2*[n=0] - 1.
Sum_{k=0..n} T(n, k) = 2^(n+2) - (n + 1 + 2*[n=0]) = A095768(n) - 2*[n=0]. (End)