A135089 Triangle T(n,k) = 5*binomial(n,k) with T(0,0) = 1, read by rows.
1, 5, 5, 5, 10, 5, 5, 15, 15, 5, 5, 20, 30, 20, 5, 5, 25, 50, 50, 25, 5, 5, 30, 75, 100, 75, 30, 5, 5, 35, 105, 175, 175, 105, 35, 5, 5, 40, 140, 280, 350, 280, 140, 40, 5, 5, 45, 180, 420, 630, 630, 420, 180, 45, 5, 5, 50, 225, 600, 1050, 1260, 1050, 600, 225, 50, 5
Offset: 0
Examples
First few rows of the triangle: 1; 5, 5; 5, 10, 5; 5, 15, 15, 5; 5, 20, 30 20, 5; 5, 25, 50, 50, 25, 5; 5, 30, 75, 100, 75, 30, 5.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Programs
-
Magma
[1] cat [5*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
-
Mathematica
Table[5*Binomial[n,k] -4*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 22 2016; May 03 2021 *)
-
Sage
def A135089(n,k): return 5*binomial(n,k) - 4*bool(n==0) flatten([[A135089(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
Formula
T(n,k) = 5*binomial(n,k), n > 0, 0 <= k <= n.
G.f.: (1+4*x+4*x*y)/(1-x-x*y). - Philippe Deléham, Nov 24 2013
Sum_{k=0..n} T(n,k) = A020714(n) - 4*[n=0]. - G. C. Greubel, May 03 2021
Comments