cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135089 Triangle T(n,k) = 5*binomial(n,k) with T(0,0) = 1, read by rows.

Original entry on oeis.org

1, 5, 5, 5, 10, 5, 5, 15, 15, 5, 5, 20, 30, 20, 5, 5, 25, 50, 50, 25, 5, 5, 30, 75, 100, 75, 30, 5, 5, 35, 105, 175, 175, 105, 35, 5, 5, 40, 140, 280, 350, 280, 140, 40, 5, 5, 45, 180, 420, 630, 630, 420, 180, 45, 5, 5, 50, 225, 600, 1050, 1260, 1050, 600, 225, 50, 5
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Comments

Row sums = A020714 (except for the first term).
Triangle T(n,k), 0 <= k <= n, read by rows given by (5, -4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (5, -4, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 24 2013

Examples

			First few rows of the triangle:
  1;
  5,  5;
  5, 10,  5;
  5, 15, 15,   5;
  5, 20, 30   20,  5;
  5, 25, 50,  50, 25,  5;
  5, 30, 75, 100, 75, 30, 5.
		

Crossrefs

Programs

  • Magma
    [1] cat [5*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
    
  • Mathematica
    Table[5*Binomial[n,k] -4*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 22 2016; May 03 2021 *)
  • Sage
    def A135089(n,k): return 5*binomial(n,k) - 4*bool(n==0)
    flatten([[A135089(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021

Formula

T(n,k) = 5*binomial(n,k), n > 0, 0 <= k <= n.
Equals 2*A134059(n,k) - A007318(n,k).
G.f.: (1+4*x+4*x*y)/(1-x-x*y). - Philippe Deléham, Nov 24 2013
Sum_{k=0..n} T(n,k) = A020714(n) - 4*[n=0]. - G. C. Greubel, May 03 2021