cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135229 Triangle A000012(signed) * A103451 * A007318, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 1, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

row sums = A005578 starting (1, 2, 3, 6, 11, 22, 43, 86, ...).

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 2,  4,  3,  1;
  1, 3,  6,  7,  4,  1;
  1, 3,  9, 13, 11,  5,  1;
  1, 4, 12, 22, 24, 16,  6, 1;
  1, 4, 16, 34, 46, 40, 22, 7, 1;
...
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 0 then return 1;
      else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2))
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, Sum[Binomial[n-1-2*j, k-1], {j, 0, Floor[(n-1)/2]}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • PARI
    T(n,k) = if(k==0, 1, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) ); \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): 1
        else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2)))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019

Formula

T(n,k) = A000012(signed) * A103451 * A007318 as infinite lower triangular matrices, where A000012(signed) = (1; -1,1; 1,-1,1; ...).
T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) = 1. - G. C. Greubel, Nov 20 2019

Extensions

Offset changed by G. C. Greubel, Nov 20 2019