A135244 Largest m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.
0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 26, 55, 289, 77, 361, 91, 38, 85, 529, 143, 46, 133, 28, 187, 841, 221, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 437, 1849, 403, 86, 493, 2209, 551, 94, 589, 0, 667, 2809, 713, 106, 703, 68, 697, 3481
Offset: 2
Keywords
Examples
a(25) = 143 since 25 has 3 predecessors (95,119,143), 143 being the largest. a(5) = 0 since it has no predecessors (see Untouchables - A005114).
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10000 (terms 2..150 from Ophir Spector)
- Wolfgang Creyaufmueller, Aliquot sequences.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
- Eric Weisstein's World of Mathematics, Aliquot sequence.
Crossrefs
Programs
-
Mathematica
seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]] = Max[s[[i]], n]], {n, 2, (max - 1)^2}]; Rest @ s]; seq[50]
-
PARI
lista(nn) = {for (n=2, nn, k = (n-1)^2; while(k && (sigma(k)-k != n), k--); print1(k, ", "););} \\ Michel Marcus, Nov 11 2014
Extensions
a(1)=0 removed and offset set to 2 by Michel Marcus, Nov 11 2014
New name from Michel Marcus, Oct 31 2023
Comments