A135275 a(n) = prime(2n-1) + prime(2n) - prime(2n+1).
0, 1, 7, 13, 21, 27, 37, 41, 53, 65, 69, 75, 95, 101, 95, 121, 127, 143, 153, 161, 169, 187, 185, 207, 223, 231, 235, 251, 263, 275, 269, 305, 299, 321, 343, 345, 361, 373, 385, 391, 409, 425, 433, 445, 457, 459, 479, 493, 507, 517
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Prime[n + 1] + Prime[n] - Prime[n + 2], {n, 1, 30}][[;; ;; 2]] (* G. C. Greubel, Oct 08 2016 *)
-
PARI
g(n) = forstep(x=1,n,2,y=prime(x+1)+ prime(x)- prime(x+2);print1(y","))
-
PARI
n=1; p=2; q=3; forprime(r=5,1e3, if(n, print1(p+q-r", ")); n=!n; p=q; q=r) \\ Charles R Greathouse IV, Oct 08 2016
Formula
We list the primes in staircase fashion as in A135274. The right diagonal, RD(n), is the set of top primes and the left diagonal, LD(x), is the set of bottom primes. Then a(n) = LD(n+1) + RD(n) - RD(n+2).
a(n) = A096379(2*n-1). - R. J. Mathar, Sep 10 2016
Extensions
New name from Charles R Greathouse IV, Oct 08 2016
Comments