cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135298 a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1, 0, 0, 0, 0, 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1, 1, 5, 6, 9, 16, 12, 14, 24, 20, 21, 23, 28, 24, 34, 20, 32, 42, 29, 29, 42, 32, 20, 34, 24, 28, 23, 21, 20, 25, 20, 22, 30, 38
Offset: 0

Views

Author

Leroy Quet, Dec 04 2007

Keywords

Comments

Does every integer greater than some positive integer N have at least one such representation?
a(n) > 0 for n > 34, a(n) > 1 for n > 56. - Alois P. Heinz, Aug 28 2014

Examples

			21 has a(21)=3 such representations: 21 = 1*4 + 2*3 + 3*1 + 4*2 = 1*4 + 2*2 + 3*3 + 4*1 = 1*3 + 2*4 + 3*2 + 4*1.
Not all representations of an integer n need to necessarily have the same j. For example, 91 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 (j=6). And 91 also equals 1*7 + 2*4 + 3*5 + 4*3 + 5*6 + 6*2 + 7*1 (j=7).
1 = 1*1;
4 = 1*2+2*1;
5 = 1*1+2*2;
10 = 1*3+2*2+3*1;
11 = 1*2+2*3+3*1;
11 = 1*3+2*1+3*2;
13 = 1*1+2*3+3*2;
13 = 1*2+2*1+3*3;
14 = 1*1+2*2+3*3;
20 = 1*4+2*3+3*2+4*1;
21 = 1*3+2*4+3*2+4*1;
21 = 1*4+2*2+3*3+4*1;
21 = 1*4+2*3+3*1+4*2;
22 = 1*3+2*4+3*1+4*2;
23 = 1*2+2*4+3*3+4*1;
23 = 1*3+2*2+3*4+4*1;
23 = 1*4+2*1+3*3+4*2;
23 = 1*4+2*2+3*1+4*3;
24 = 1*2+2*3+3*4+4*1;
24 = 1*4+2*1+3*2+4*3;
25 = 1*2+2*4+3*1+4*3;
25 = 1*3+2*1+3*4+4*2;
26 = 1*1+2*4+3*3+4*2;
26 = 1*3+2*2+3*1+4*4;
27 = 1*1+2*3+3*4+4*2;
27 = 1*1+2*4+3*2+4*3;
27 = 1*2+2*3+3*1+4*4;
27 = 1*3+2*1+3*2+4*4;
28 = 1*2+2*1+3*4+4*3;
29 = 1*1+2*2+3*4+4*3;
29 = 1*1+2*3+3*2+4*4;
29 = 1*2+2*1+3*3+4*4;
30 = 1*1+2*2+3*3+4*4;
		

Crossrefs

Programs

  • Maple
    A135298rec := proc(j,n,notm) local a,m ; a := 0 ; if n = 0 then if max( seq(e,e=notm) ) >= j then RETURN(0) ; else RETURN(1) ; fi ; end: for m from 1 do if n-j*m < 0 then break ; elif not m in notm then a := a+A135298rec(j+1,n-j*m,[op(notm),m] ) ; fi ; od: RETURN(a) ; end: A135298 := proc(n) A135298rec(1,n,[]) ; end: for n from 1 to 140 do printf("%d, ",A135298(n)) ; od: # R. J. Mathar, Jan 30 2008
    # second Maple program:
    n:= 8 : # gives binomial(n+3, 3) terms
    with(combinat):
    (p-> seq(coeff(p, x, j), j=0..binomial(n+3, 3)-1))
    (add(add(x^add(i*l[i], i=1..h), l=permute(h)), h=0..n));
    # Alois P. Heinz, Aug 29 2014
  • Mathematica
    n = 8; (* gives binomial(n+3, 3)-1 terms *) Function[p, Table[ Coefficient[p, x, j], {j, 1, Binomial[n+3, 3]-1}]] @ Sum[x^(l.Range[h]), {h, 1, n}, {l, Permutations @ Range[h]}] (* Jean-François Alcover, Jul 22 2017, after Alois P. Heinz *)

Extensions

More terms from R. J. Mathar, Jan 30 2008
a(0)=1 prepended by Alois P. Heinz, Nov 23 2023