A135298 a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers.
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1, 0, 0, 0, 0, 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1, 1, 5, 6, 9, 16, 12, 14, 24, 20, 21, 23, 28, 24, 34, 20, 32, 42, 29, 29, 42, 32, 20, 34, 24, 28, 23, 21, 20, 25, 20, 22, 30, 38
Offset: 0
Examples
21 has a(21)=3 such representations: 21 = 1*4 + 2*3 + 3*1 + 4*2 = 1*4 + 2*2 + 3*3 + 4*1 = 1*3 + 2*4 + 3*2 + 4*1. Not all representations of an integer n need to necessarily have the same j. For example, 91 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 (j=6). And 91 also equals 1*7 + 2*4 + 3*5 + 4*3 + 5*6 + 6*2 + 7*1 (j=7). 1 = 1*1; 4 = 1*2+2*1; 5 = 1*1+2*2; 10 = 1*3+2*2+3*1; 11 = 1*2+2*3+3*1; 11 = 1*3+2*1+3*2; 13 = 1*1+2*3+3*2; 13 = 1*2+2*1+3*3; 14 = 1*1+2*2+3*3; 20 = 1*4+2*3+3*2+4*1; 21 = 1*3+2*4+3*2+4*1; 21 = 1*4+2*2+3*3+4*1; 21 = 1*4+2*3+3*1+4*2; 22 = 1*3+2*4+3*1+4*2; 23 = 1*2+2*4+3*3+4*1; 23 = 1*3+2*2+3*4+4*1; 23 = 1*4+2*1+3*3+4*2; 23 = 1*4+2*2+3*1+4*3; 24 = 1*2+2*3+3*4+4*1; 24 = 1*4+2*1+3*2+4*3; 25 = 1*2+2*4+3*1+4*3; 25 = 1*3+2*1+3*4+4*2; 26 = 1*1+2*4+3*3+4*2; 26 = 1*3+2*2+3*1+4*4; 27 = 1*1+2*3+3*4+4*2; 27 = 1*1+2*4+3*2+4*3; 27 = 1*2+2*3+3*1+4*4; 27 = 1*3+2*1+3*2+4*4; 28 = 1*2+2*1+3*4+4*3; 29 = 1*1+2*2+3*4+4*3; 29 = 1*1+2*3+3*2+4*4; 29 = 1*2+2*1+3*3+4*4; 30 = 1*1+2*2+3*3+4*4;
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1770
- FindStat - Combinatorial Statistic Finder, The rank of the permutation inside the alternating sign matrix lattice
- J. Sack and H. Úlfarsson, Refined inversion statistics on permutations, arXiv preprint arXiv:1106.1995 [math.CO], 2011-2012.
Programs
-
Maple
A135298rec := proc(j,n,notm) local a,m ; a := 0 ; if n = 0 then if max( seq(e,e=notm) ) >= j then RETURN(0) ; else RETURN(1) ; fi ; end: for m from 1 do if n-j*m < 0 then break ; elif not m in notm then a := a+A135298rec(j+1,n-j*m,[op(notm),m] ) ; fi ; od: RETURN(a) ; end: A135298 := proc(n) A135298rec(1,n,[]) ; end: for n from 1 to 140 do printf("%d, ",A135298(n)) ; od: # R. J. Mathar, Jan 30 2008 # second Maple program: n:= 8 : # gives binomial(n+3, 3) terms with(combinat): (p-> seq(coeff(p, x, j), j=0..binomial(n+3, 3)-1)) (add(add(x^add(i*l[i], i=1..h), l=permute(h)), h=0..n)); # Alois P. Heinz, Aug 29 2014
-
Mathematica
n = 8; (* gives binomial(n+3, 3)-1 terms *) Function[p, Table[ Coefficient[p, x, j], {j, 1, Binomial[n+3, 3]-1}]] @ Sum[x^(l.Range[h]), {h, 1, n}, {l, Permutations @ Range[h]}] (* Jean-François Alcover, Jul 22 2017, after Alois P. Heinz *)
Extensions
More terms from R. J. Mathar, Jan 30 2008
a(0)=1 prepended by Alois P. Heinz, Nov 23 2023
Comments