cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135312 Number of transitive reflexive binary relations R on n labeled elements where |{y : xRy}| <= 2 for all x.

Original entry on oeis.org

1, 1, 4, 13, 62, 311, 1822, 11593, 80964, 608833, 4910786, 42159239, 383478988, 3678859159, 37087880754, 391641822541, 4319860660448, 49647399946049, 593217470459314, 7354718987639959, 94445777492433516, 1254196823154143191, 17198114810490326714, 243191242578584519333
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2007

Keywords

Examples

			a(2) = 4 because there are 4 relations of the given kind for 2 elements: 1R1, 2R2;  1R1, 2R2, 1R2;  1R1, 2R2, 2R1;  1R1, 2R2, 1R2, 2R1.
		

References

  • A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.

Crossrefs

Column k=2 of A135302.

Programs

  • Maple
    u:= proc(n) option remember; add(binomial(n, i)*(n-i)^i, i=0..n) end:
    a:= n-> add(binomial(n, 2*i)*doublefactorial(2*i-1)*u(n-2*i), i=0..iquo(n, 2)):
    seq(a(n), n=0..50);
  • Mathematica
    a[n_] := SeriesCoefficient[Exp[x*Exp[x] + x^2/2], {x, 0, n}]*n!; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014 *)

Formula

a(n) = Sum_{i=0..floor(n/2)} C(n,2*i) * A006882(2*i-1) * A000248(n-2*i).
a(n) = A135302(n,2).
E.g.f.: exp(x*exp(x) + x^2/2).