A135312 Number of transitive reflexive binary relations R on n labeled elements where |{y : xRy}| <= 2 for all x.
1, 1, 4, 13, 62, 311, 1822, 11593, 80964, 608833, 4910786, 42159239, 383478988, 3678859159, 37087880754, 391641822541, 4319860660448, 49647399946049, 593217470459314, 7354718987639959, 94445777492433516, 1254196823154143191, 17198114810490326714, 243191242578584519333
Offset: 0
Keywords
Examples
a(2) = 4 because there are 4 relations of the given kind for 2 elements: 1R1, 2R2; 1R1, 2R2, 1R2; 1R1, 2R2, 2R1; 1R1, 2R2, 1R2, 2R1.
References
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
u:= proc(n) option remember; add(binomial(n, i)*(n-i)^i, i=0..n) end: a:= n-> add(binomial(n, 2*i)*doublefactorial(2*i-1)*u(n-2*i), i=0..iquo(n, 2)): seq(a(n), n=0..50);
-
Mathematica
a[n_] := SeriesCoefficient[Exp[x*Exp[x] + x^2/2], {x, 0, n}]*n!; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014 *)