A135313 Triangle of numbers T(n,k) (n>=0, n>=k>=0) of transitive reflexive early confluent binary relations R on n labeled elements where k=max_{x}(|{y : xRy}|), read by rows.
1, 0, 1, 0, 1, 3, 0, 1, 12, 13, 0, 1, 61, 106, 75, 0, 1, 310, 1105, 1035, 541, 0, 1, 1821, 12075, 16025, 11301, 4683, 0, 1, 11592, 141533, 267715, 239379, 137774, 47293, 0, 1, 80963, 1812216, 4798983, 5287506, 3794378, 1863044, 545835, 0, 1, 608832, 25188019, 92374107, 124878033, 105494886, 64432638, 27733869, 7087261
Offset: 0
Examples
T(3,3) = 13 because there are 13 relations of the given kind for 3 elements: (1) 1R2, 2R1, 1R3, 3R1, 2R3, 3R2; (2) 1R2, 1R3, 2R3, 3R2; (3) 2R1, 2R3, 1R3, 3R1; (4) 3R1, 3R2, 1R2, 2R1; (5) 2R1, 3R1, 2R3, 3R2; (6) 1R2, 3R2, 1R3, 3R1; (7) 1R3, 2R3, 1R2, 2R1; (8) 1R2, 2R3, 1R3; (9) 1R3, 3R2, 1R2; (10) 2R1, 1R3, 2R3; (11) 2R3, 3R1, 2R1; (12) 3R1, 1R2, 3R2; (13) 3R2, 2R1, 3R1; (the reflexive relationships 1R1, 2R2, 3R3 have been omitted for brevity). Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 1, 12, 13; 0, 1, 61, 106, 75; 0, 1, 310, 1105, 1035, 541; 0, 1, 1821, 12075, 16025, 11301, 4683; ...
References
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Columns k=0-10 give: A000007, A057427, A218092, A218093, A218094, A218095, A218096, A218097, A218098, A218099, A218091.
Main diagonal and lower diagonals give: A000670, A218111, A218112, A218103, A218104, A218105, A218106, A218107, A218108, A218109, A218110.
Row sums are in A052880.
T(2n,n) gives A261238.
Cf. A135302.
Programs
-
Maple
t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x)) end: tt:= proc(k) option remember; unapply((t(k)-t(k-1))(x), x) end: T:= proc(n, k) option remember; coeff(series(tt(k)(x), x, n+1), x, n)*n! end: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k - m, x], {m, 1, k}]]; (* a = A135302 *) a[0, 0] = 1; a[, 0] = 0; a[n, k_] := SeriesCoefficient[f[k, x], {x, 0, n}]*n!; t[n_, 0] := a[n, 0]; t[n_, k_] := a[n, k] - a[n, k-1]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2013, after A135302 *)
Comments