A135331 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k DUUU's starting at level 1.
1, 1, 2, 5, 13, 1, 36, 6, 105, 27, 320, 108, 1, 1011, 409, 10, 3289, 1508, 65, 10957, 5491, 347, 1, 37216, 19898, 1658, 14, 128435, 72063, 7395, 119, 449142, 261436, 31527, 794, 1, 1588228, 951258, 130353, 4583, 18
Offset: 0
Examples
Triangle begins: 1 1 2 5 13 1 36 6 105 27 320 108 1 1011 409 10 3289 1508 65 10957 5491 347 1 ... T(5,1)=6 because we have U(DUUU)UDDDD, U(DUUU)DUDDD, U(DUUU)DDUDD, U(DUUU)DDDUD, UDU(DUUU)DDD and UUD(DUUU)DDD (the DUUU's starting at level 1 are shown between parentheses).
Links
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
G:=1+z*C^2/(1+(1-t)*z^3*C^4): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=simplify(series(G,z=0,16)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) end do: 1; for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor((n-1)*1/3)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 14 2007
Formula
G.f.: G(t,z)=1+zC^2/[1+(1-t)z^3*C^4], where C=[1-sqrt(1-4z)]/(2z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Dec 14 2007
Extensions
More terms from Emeric Deutsch, Dec 14 2007
Comments