cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135333 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k DUDU's starting at level 1.

Original entry on oeis.org

1, 1, 2, 4, 1, 11, 2, 1, 32, 7, 2, 1, 99, 22, 8, 2, 1, 318, 73, 26, 9, 2, 1, 1051, 246, 90, 30, 10, 2, 1, 3550, 844, 312, 108, 34, 11, 2, 1, 12200, 2936, 1096, 384, 127, 38, 12, 2, 1, 42520, 10334, 3886, 1379, 462, 147, 42, 13, 2, 1, 149930, 36736, 13897, 4978, 1694
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Each of rows 0, 1 and 2 contains one entry. Row n contains n-1 entries (n >= 2). Row sums are the Catalan numbers (A000108). Column 0 yields A135339. - Emeric Deutsch, Dec 13 2007

Examples

			Triangle begins:
1
1
2
4 1
11 2 1
32 7 2 1
99 22 8 2 1
318 73 26 9 2 1
1051 246 90 30 10 2 1
...
T(4,1)=2 because we have U(DUDU)UDD and UUD(DUDU)D; T(4,2)=1 because we have U(DU[DU)DU]D (the DUDU's starting at level 1 are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G:=1+z*C+z^2*C^3/(1+(1-t)*z*C): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=simplify(series(G,z=0,17)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) end do: 1; 1; for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 13 2007
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,
          `if`(y0, b(x-1, y-1, `if`(y=1, [2, 1, 4, 1][t], 1)), 0)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 28 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[x == 0, 1, If[y < x, b[x - 1, y + 1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1], 0] + If[y > 0, b[x - 1, y - 1, If[y == 1, {2, 1, 4, 1}[[t]], 1]], 0]]]; T[n_] := Function [p, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 14 2016, after Alois P. Heinz *)

Formula

G.f.: 1+zC+z^2*C^3/[1+(1-t)zC], where C=[1-sqrt(1-4z)]/(2z) is the g.f. of the Catalan numbers (A000108). T(n,k) = d(0,k)*c(n-1)+Sum[(-1)^(j-k)*(j+3)binomial(j,k)binomial(2n-j-2,n),j=k..n-2]/(n+1), where c(m) = binomial(2m,m)/(m+1) = A000108(m) is a Catalan number and d(0,k) is the Kronecker symbol. - Emeric Deutsch, Dec 13 2007

Extensions

Edited and extended by Emeric Deutsch, Dec 13 2007