cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135334 Number of Dyck paths of semilength n having no UDDU's starting at level 1.

Original entry on oeis.org

1, 1, 2, 4, 10, 29, 90, 290, 960, 3246, 11164, 38934, 137358, 489341, 1757882, 6360634, 23160528, 84802606, 312041692, 1153271984, 4279311348, 15935808866, 59537435012, 223099337404, 838282693560, 3157706225584
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Column 0 of A135328. - Emeric Deutsch, Dec 14 2007
The inverse Catalan transform is 1 followed by A133872. - R. J. Mathar, Mar 20 2009
2-colored Motzkin paths of length n with no peaks at level 1. - José Luis Ramírez Ramírez, Dec 08 2011

Examples

			a(3)=4 because among the 5 (=A000108(3)) Dyck paths of semilength 3 only UUDDUD does not qualify.
		

Crossrefs

Programs

  • Maple
    a := n -> 2*(add((-1)^j*(j+1)*binomial(2*n-2*j-1, n), j=0..floor((n-1)/2)))/(n+1): 1, seq(a(n),n=1..25); # Emeric Deutsch, Dec 14 2007
    G:=1+z*C^2/(1+z^2*C^2): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=series(G,z=0,30); seq(coeff(Gser,z,n),n=0..25); # Emeric Deutsch, Dec 14 2007
  • Mathematica
    CoefficientList[Series[1+x*((1-Sqrt[1-4*x])/(2*x))^2/(1+x^2*((1-Sqrt[1-4*x])/(2*x))^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

From Emeric Deutsch, Dec 14 2007: (Start)
a(n) = 2*(Sum_{j=0..floor((n-1)/2)} (-1)^j*(j+1)*binomial(2n-2j-1,n))/(n+1) (n >= 1).
G.f.: 1 + z*C^2/(1 + z^2*C^2), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
Conjecture: 2*(n+1)*a(n) + 2*(1-5n)*a(n-1) + 3*(3n-1)*a(n-2) + 2*(1-2n)*a(n-3) = 0. - R. J. Mathar, Dec 18 2011
a(n) ~ 4^(n+2) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014

Extensions

Edited and extended by Emeric Deutsch, Dec 14 2007