A135334 Number of Dyck paths of semilength n having no UDDU's starting at level 1.
1, 1, 2, 4, 10, 29, 90, 290, 960, 3246, 11164, 38934, 137358, 489341, 1757882, 6360634, 23160528, 84802606, 312041692, 1153271984, 4279311348, 15935808866, 59537435012, 223099337404, 838282693560, 3157706225584
Offset: 0
Keywords
Examples
a(3)=4 because among the 5 (=A000108(3)) Dyck paths of semilength 3 only UUDDUD does not qualify.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
a := n -> 2*(add((-1)^j*(j+1)*binomial(2*n-2*j-1, n), j=0..floor((n-1)/2)))/(n+1): 1, seq(a(n),n=1..25); # Emeric Deutsch, Dec 14 2007 G:=1+z*C^2/(1+z^2*C^2): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=series(G,z=0,30); seq(coeff(Gser,z,n),n=0..25); # Emeric Deutsch, Dec 14 2007
-
Mathematica
CoefficientList[Series[1+x*((1-Sqrt[1-4*x])/(2*x))^2/(1+x^2*((1-Sqrt[1-4*x])/(2*x))^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
Formula
From Emeric Deutsch, Dec 14 2007: (Start)
a(n) = 2*(Sum_{j=0..floor((n-1)/2)} (-1)^j*(j+1)*binomial(2n-2j-1,n))/(n+1) (n >= 1).
G.f.: 1 + z*C^2/(1 + z^2*C^2), where C = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). (End)
Conjecture: 2*(n+1)*a(n) + 2*(1-5n)*a(n-1) + 3*(3n-1)*a(n-2) + 2*(1-2n)*a(n-3) = 0. - R. J. Mathar, Dec 18 2011
a(n) ~ 4^(n+2) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
Extensions
Edited and extended by Emeric Deutsch, Dec 14 2007
Comments