A135481 a(n) = 2^A007814(n+1) - 1.
0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 31, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 63, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 31, 0, 1, 0, 3, 0, 1, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Programs
-
Julia
using IntegerSequences A135481List(len) = [Bits("CNIMP", n+1, n) for n in 0:len] println(A135481List(100)) # Peter Luschny, Sep 25 2021
-
Maple
GS(1,6,200); # see A135416
-
Mathematica
Table[BitAnd[i, BitNot[i+1]], {i, 0, 200}] (* Peter Luschny, Jun 01 2011 *)
-
PARI
a(n) = 2^valuation(n+1, 2)-1; \\ Michel Marcus, Nov 19 2017
-
PARI
a(n) = bitand(bitneg(n+1), n); \\ Ruud H.G. van Tol, Apr 05 2023
-
Python
def A135481(n): return ~(n+1)&n # Chai Wah Wu, Jul 06 2022
Formula
a(n) = A006519(n+1) - 1. - R. J. Mathar, Feb 10 2016
Extensions
a(0) = 0 prepended by Andrey Zabolotskiy, Oct 08 2019, based on Lothar Esser's contribution
Comments