cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135558 Sums of three distinct nonzero Fibonacci numbers.

Original entry on oeis.org

6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 79, 81, 84, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Colm Mulcahy, Feb 23 2008, Mar 02 2008

Keywords

Comments

These numbers may have more than one such representation.

Crossrefs

Cf. A000045, A135709 (Complement).

Programs

  • Maple
    isA135558 := proc(n) # returns true if n is in the sequence
        local xi,yi,x,y,z ;
        for xi from 2 do
            x := A000045(xi) ;
            if 3*x > n then
                return false;
            end if;
            for yi from xi+1 do
                y := A000045(yi) ;
                if x+2*y > n then
                    break;
                else
                    z := n-x-y ;
                    if z >y and isA000045(z) then # see isFib in A000045
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A135558 := proc(n)
        option remember;
        local a;
        if n = 1 then
            6;
        else
            for a from procname(n-1)+1 do
                if isA135558(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    fibs[n_ /; n >= 6] := Reap[Module[{k = 1}, While[Fibonacci[k] < n, Sow[Fibonacci[k++]]]]][[2, 1]];
    okQ[n_] := AnyTrue[IntegerPartitions[n, {3}, fibs[n]], Length[Union[#]] == 3&];
    Select[Range[6, 100], okQ] (* Jean-François Alcover, Dec 12 2023 *)
    Select[Total/@Subsets[Fibonacci[Range[2,12]],{3}]//Union,#<=100&] (* Harvey P. Dale, Jul 06 2025 *)

Extensions

More terms from N. J. A. Sloane, Mar 01 2008, corrected Mar 05 2008