A135558 Sums of three distinct nonzero Fibonacci numbers.
6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 79, 81, 84, 89, 90, 91, 92, 93, 94, 95
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Colm Mulcahy, Additional Certainties, February 2008.
Programs
-
Maple
isA135558 := proc(n) # returns true if n is in the sequence local xi,yi,x,y,z ; for xi from 2 do x := A000045(xi) ; if 3*x > n then return false; end if; for yi from xi+1 do y := A000045(yi) ; if x+2*y > n then break; else z := n-x-y ; if z >y and isA000045(z) then # see isFib in A000045 return true; end if; end if; end do: end do: end proc: A135558 := proc(n) option remember; local a; if n = 1 then 6; else for a from procname(n-1)+1 do if isA135558(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Sep 09 2015
-
Mathematica
fibs[n_ /; n >= 6] := Reap[Module[{k = 1}, While[Fibonacci[k] < n, Sow[Fibonacci[k++]]]]][[2, 1]]; okQ[n_] := AnyTrue[IntegerPartitions[n, {3}, fibs[n]], Length[Union[#]] == 3&]; Select[Range[6, 100], okQ] (* Jean-François Alcover, Dec 12 2023 *) Select[Total/@Subsets[Fibonacci[Range[2,12]],{3}]//Union,#<=100&] (* Harvey P. Dale, Jul 06 2025 *)
Extensions
More terms from N. J. A. Sloane, Mar 01 2008, corrected Mar 05 2008
Comments