A135588 Number of symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.
1, 1, 2, 6, 20, 74, 302, 1314, 6122, 29982, 154718, 831986, 4667070, 27118610, 163264862, 1013640242, 6488705638, 42687497378, 288492113950, 1998190669298, 14177192483742, 102856494496050, 762657487965086, 5771613810502002, 44555989658479726, 350503696871063138
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Nov 14 2018: (Start) The a(4) = 20 matrices: [11] [11] . [110][101][100][100][011][010][010][001][001] [100][010][011][001][100][110][101][010][001] [001][100][010][011][100][001][010][101][110] . [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001] [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010] [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100] [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..721 (first 51 terms from Vincenzo Librandi)
Crossrefs
Programs
-
Mathematica
Table[Sum[SeriesCoefficient[(1+x)^k*(1+x^2)^(k*(k-1)/2)/2^(k+1),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 02 2014 *) Join[{1}, Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}]] (* Gus Wiseman, Nov 14 2018 *)
Formula
G.f.: Sum_{n>=0} (1+x)^n*(1+x^2)^binomial(n,2)/2^(n+1).
G.f.: Sum_{n>=0} (Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(1+x)^k*(1+x^2)^binomial(k,2)).