cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135593 Number of n X n symmetric (0,1)-matrices with exactly n+1 entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

2, 9, 36, 140, 540, 2142, 8624, 35856, 152280, 666380, 2982672, 13716144, 64487696, 310693320, 1528801920, 7691652992, 39474925344, 206758346256, 1103332900160, 5999356762560, 33197323465152, 186925844947424, 1069977071943936
Offset: 2

Views

Author

Vladeta Jovovic, Feb 25 2008

Keywords

Crossrefs

Programs

  • Maple
    A135593 := proc(n) n!*coeftayl( x^2*(x+2)/2*exp(x*(x+2)/2),x=0,n) ; end: seq(A135593(n),n=2..40) ; # R. J. Mathar, Mar 31 2008
  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2*(x+2)/2*E^(x*(x+2)/2), {x, 0, 20}], x]* Range[0, 20]!]] (* Vaclav Kotesovec, Oct 20 2012 *)
    Flatten[{2,9,RecurrenceTable[{(n-5)*(n-2)*a[n]==(n-6)*n*a[n-1]+(n-4)*(n-1)*n*a[n-2],a[4]==36,a[5]==140},a,{n,4,20}]}] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

E.g.f.: x^2*(x+2)/2*exp(x*(x+2)/2).
Recurrence (for n>5): (n-5)*(n-2)*a(n) = (n-6)*n*a(n-1) + (n-4)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 1/4*sqrt(2)*exp(sqrt(n)-n/2-1/4)*n^(n/2+3/2). - Vaclav Kotesovec, Oct 20 2012

Extensions

More terms from R. J. Mathar, Mar 31 2008