cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135600 Angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. The last acute-angled number of this sequence has 14 digits: 98765432102468. The last right-angled number of this sequence has 19 digits: 9876543210123456789. All 3-digit numbers are terms of this sequence. Next terms are 1000, 1012, 1024, 1036, 1048, 1110, 1111, 1112, 1113, 1114, ....
For each k >= 20, there are 363 k-digit terms: 354 obtuse-angled and 9 straight-angled.- Michael S. Branicky, Aug 03 2022

Examples

			The acute-angled number 12342 (see A135601):
  . . . . .
  . . . 4 .
  . . 3 . .
  . 2 . . 2
  1 . . . .
The right-angled number 12343 (see A135602):
  . . . . .
  . . . 4 .
  . . 3 . 3
  . 2 . . .
  1 . . . .
The obtuse-angled number 12344 (see A135603):
  . . . . .
  . . . 4 4
  . . 3 . .
  . 2 . . .
  1 . . . .
The straight-angled (or straight-line) number 12345 (see A135643):
  . . . . 5
  . . . 4 .
  . . 3 . .
  . 2 . . .
  1 . . . .
		

Crossrefs

Programs

  • PARI
    \\ See PARI link. David A. Corneth, Aug 02 2022
    
  • Python
    from itertools import count, islice
    def agen():
        seeds = [k for k in range(100, 1000)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 03 2022