A135635 Triangle read by rows, constructed by the Pascal rule, with top entry 2, left edge = odd numbers, right edge = squares plus 1.
2, 3, 5, 5, 8, 10, 7, 13, 18, 17, 9, 20, 31, 35, 26, 11, 29, 51, 66, 61, 37, 13, 40, 80, 117, 127, 98, 50, 15, 53, 120, 197, 244, 225, 148, 65, 17, 68, 173, 317, 441, 469, 373, 213, 82, 19, 85, 241, 490, 758, 910, 842, 586, 295, 101
Offset: 1
Examples
............2 ...........3.5 ..........5.8.10 ........7.13.18.17 .......9.20.31.35.26 .....11.29.51.66.61.37
Links
- G. C. Greubel, Table of n, a(n) for the first 25 rows
Crossrefs
Cf. A002522.
Programs
-
Maple
T:=proc(n,k)if n=1 and k=1 then 2 elif k=1 then 2*n-1 elif n < k then 0 elif k =n then n^2+1 else T(n-1,k)+T(n-1,k-1) end if end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form - Emeric Deutsch, Mar 03 2008
-
Mathematica
T[1, 1]:= 2; T[n_, 1]:= 2*n - 1; T[n_, n_]:= n^2 + 1; T[n_, k_] := T[n - 1, k] + T[n - 1, k - 1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Oct 25 2016 *)
Extensions
More terms from Emeric Deutsch, Mar 03 2008