cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135655 Divisors of 33550336 (the 5th perfect number), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 1111111111111, 11111111111110, 111111111111100, 1111111111111000, 11111111111110000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008, Mar 01 2008, Mar 03 2008

Keywords

Comments

The number of divisors of the 5th perfect number is equal to 2*A000043(5)=A061645(5)=26.

Examples

			The structure of divisors of 33550336 (see A133025)
------------------------------------------------------------------------
n ...... Divisor . Formula ....... Divisor written in base 2 ...........
------------------------------------------------------------------------
1)............ 1 = 2^0 ........... 1
2)............ 2 = 2^1 ........... 10
3)............ 4 = 2^2 ........... 100
4)............ 8 = 2^3 ........... 1000
5)........... 16 = 2^4 ........... 10000
6)........... 32 = 2^5 ........... 100000
7)........... 64 = 2^6 ........... 1000000
8).......... 128 = 2^7 ........... 10000000
9).......... 256 = 2^8 ........... 100000000
10)......... 512 = 2^9 ........... 1000000000
11)........ 1024 = 2^10 .......... 10000000000
12)........ 2048 = 2^11 .......... 100000000000
13) ....... 4096 = 2^12 .......... 1000000000000 ... (The 5th superperfect number)
14) ....... 8191 = 2^13 - 2^0 .... 1111111111111 ... (The 5th Mersenne prime)
15) ...... 16382 = 2^14 - 2^1 .... 11111111111110
16) ...... 32764 = 2^15 - 2^2 .... 111111111111100
17) ...... 65528 = 2^16 - 2^3 .... 1111111111111000
18) ..... 131056 = 2^17 - 2^4 .... 11111111111110000
19) ..... 262112 = 2^18 - 2^5 .... 111111111111100000
20) ..... 524224 = 2^19 - 2^6 .... 1111111111111000000
21) .... 1048448 = 2^20 - 2^7 .... 11111111111110000000
22) .... 2096896 = 2^21 - 2^8 .... 111111111111100000000
23) .... 4193792 = 2^22 - 2^9 .... 1111111111111000000000
24) .... 8387584 = 2^23 - 2^10 ... 11111111111110000000000
25) ... 16775168 = 2^24 - 2^11 ... 111111111111100000000000
26) ... 33550336 = 2^25 - 2^12 ... 1111111111111000000000000 ... (The 5th perfect number)
		

Crossrefs

For more information see A133025 (Divisors of 33550336). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.

Formula

a(n)=A133025(n), written in base 2. Also, for n=1 .. 26: If n<=(A000043(5)=13) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(5)=13 digits "1" and (n-1-A000043(5)) digits "0".