cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135711 Minimal perimeter of a polyhex with n cells.

Original entry on oeis.org

6, 10, 12, 14, 16, 18, 18, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 34, 34, 36, 36, 36, 38, 38, 38, 40, 40, 40, 42, 42, 42, 42, 44, 44, 44, 46, 46, 46, 46, 48, 48, 48, 48, 50, 50, 50, 50, 52, 52, 52, 52, 54, 54, 54, 54, 54, 56, 56, 56, 56, 58, 58, 58, 58, 58, 60, 60
Offset: 1

Views

Author

Tanya Khovanova, Mar 04 2008

Keywords

References

  • Y. S. Kupitz, "On the maximal number of appearances of the minimal distance among n points in the plane", in Intuitive geometry: Proceedings of the 3rd international conference held in Szeged, Hungary, 1991; Amsterdam: North-Holland: Colloq. Math. Soc. Janos Bolyai. 63, 217-244.

Crossrefs

Cf. A000228 (number of hexagonal polyominoes (or planar polyhexes) with n cells), A135708.
Analogs for triangles, squares, cubes: A067628, A027709, A075777.

Programs

  • Mathematica
    Table[2Ceiling[Sqrt[12n-3]],{n,120}] (* Harvey P. Dale, Dec 29 2019 *)

Formula

It is easy to use the formula of Harborth given in A135708 to show that a(n) = 2*ceiling(sqrt(12*n-3)). - Sascha Kurz, Mar 05 2008
2*A135708(n) - a(n) = 6n. - Tanya Khovanova, Mar 07 2008

Extensions

More terms from N. J. A. Sloane, Mar 05 2008