cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135961 G.f.: A(x) = Sum_{n>=0} x^n/(1 - Fibonacci(n)*x).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 25, 79, 318, 1637, 10753, 89872, 955537, 12930173, 222618066, 4874855543, 135781292309, 4811103270054, 216847500834513, 12432143862756779, 906625645142897790, 84102571511631809865
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2007

Keywords

Examples

			A(x) = 1 + x/(1-x) + x^2/(1-x) + x^3/(1-2x) + x^4/(1-3x) + x^5/(1-5x) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Fibonacci[k]^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 29 2012 *)
  • PARI
    a(n)=sum(k=0, n, fibonacci(k)^(n-k))

Formula

a(n) = Sum_{k=0..n} Fibonacci(k)^(n-k).
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/4) / 5^(n/4), where c = Sum_{k=-Infinity..Infinity} 5^(k/2)*((1+sqrt(5))/2)^(-k^2) = 3.5769727481316948565395...(see A219781) if n is even and c = Sum_{k=-Infinity..Infinity} 5^((k+1/2)/2)*((1+sqrt(5))/2)^(-(k+1/2)^2) = 3.5769727390073366345992... if n is odd. - Vaclav Kotesovec, Nov 29 2012

A219781 Decimal expansion of Sum_{n = -infinity..infinity} 5^(n/2)*((1+sqrt(5))/2)^(-n^2).

Original entry on oeis.org

3, 5, 7, 6, 9, 7, 2, 7, 4, 8, 1, 3, 1, 6, 9, 4, 8, 5, 6, 5, 3, 9, 5, 1, 9, 7, 8, 4, 8, 5, 6, 3, 7, 4, 5, 3, 7, 5, 2, 8, 4, 0, 5, 3, 6, 5, 2, 3, 5, 2, 2, 2, 3, 0, 7, 7, 3, 6, 9, 7, 2, 7, 3, 7, 6, 1, 2, 6, 1, 7, 5, 8, 2, 7, 8, 1, 1, 1, 2, 7, 1, 7, 5, 7, 3, 0, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 29 2012

Keywords

Comments

Constant is associated with A135961.

Examples

			3.5769727481316948565395...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[5^(k/2)*((1+Sqrt[5])/2)^(-k^2), {k,-Infinity,Infinity}], 131], 10, 130][[1]]
Showing 1-2 of 2 results.