A135828 Expansion of psi(x^2)^8 * (psi(x)^8 + psi(-x)^8) / 2 in powers of x^2 where psi() is a Ramanujan theta function.
1, 36, 378, 2200, 8955, 28836, 78558, 188568, 410805, 828080, 1564686, 2804976, 4809370, 7927380, 12643560, 19594632, 29568204, 43626708, 63094550, 89501040, 124916931, 171803652, 232822908, 311683680, 412601490, 539849556, 699657642, 898801400, 1143680535
Offset: 0
Keywords
Examples
G.f. = 1 + 36*x + 378*x^2 + 2200*x^3 + 8955*x^4 + 28836*x^6 + 78558*x^7 + ... G.f. = q^3 + 36*q^5 + 378*q^7 + 2200*q^9 + 8955*q^11 + 28836*q^13 + 78558*q^15 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
Basis( ModularForms( Gamma1(4), 8), 60)[4]; /* Michael Somos, Oct 15 2015 */
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^8 (EllipticTheta[ 2, 0, x^(1/2)]^8 + EllipticTheta[ 2, Pi/4, x^(1/2)]^8 16) / 131072, {x, 0, 2 n + 3}]; (* Michael Somos, Oct 15 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( ( eta(x^2 + A)^24 + eta(x + A)^16 * eta(x^4 + A)^8 ) / ( 2 * eta(x + A)^8 * eta(x^2 + A)^16 / eta(x^4 + A)^16 ), n))};
Comments