A135832 Irregular triangle of Section I primes. Row n contains primes p with 2^n < p < 2^(n+1) and phi^n(p) = 2, where phi^n means n iterations of Euler's totient function.
3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 47, 53, 59, 61, 83, 89, 97, 101, 103, 107, 113, 137, 167, 179, 193, 227, 233, 239, 241, 251, 257, 353, 359, 389, 401, 409, 443, 449, 461, 467, 479, 499, 503, 641, 719, 769, 773, 809, 821, 823, 857, 881, 887, 929, 941, 953
Offset: 1
Examples
Table begins: 3; 5, 7; 11, 13; 17, 23, 29, 31; 41, 47, 53, 59, 61; 83, ...
Links
- T. D. Noe, Rows n = 1..22 of triangle, flattened
- Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 18-30.
Crossrefs
Cf. A135834 (Section II primes).
Programs
-
Mathematica
nMax=10; nn=2^nMax; c=Table[0,{nn}]; Do[c[[n]]=1+c[[EulerPhi[n]]], {n,2,nn}]; t={}; Do[t=Join[t,Select[Flatten[Position[c,n]], #<2^n && PrimeQ[ # ]&]], {n,nMax}]; t
Comments