cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135840 A135839 * A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 1, 4, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 8, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Row sums = A004652 starting (1, 3, 4, 7, 9, 13, 16, 21, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 2, 1, 1;
  3, 2, 2, 1, 1;
  4, 3, 2, 2, 1, 1;
  4, 3, 3, 2, 2, 1, 1;
  5, 4, 3, 3, 2, 2, 1, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[1, 1] := 1; T[n_, 1] := Floor[(n + 2)/2]; T[n_, n_] := 1; T[n_, k_] := Floor[(n - k + 2)/2]; Table[T[n, k], {n, 1, 8}, {k, 1, n}]//Flatten (* G. C. Greubel, Dec 05 2016 *)

Formula

T(1, 1) = 1, T(n, 1) = floor((n + 2)/2), T(n, n) = 1, T(n, k) = floor((n - k + 2)/2). - G. C. Greubel, Dec 05 2016