A135840 A135839 * A000012 as infinite lower triangular matrices.
1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 1, 4, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 8, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1
Keywords
Examples
First few rows of the triangle: 1; 2, 1; 2, 1, 1; 3, 2, 1, 1; 3, 2, 2, 1, 1; 4, 3, 2, 2, 1, 1; 4, 3, 3, 2, 2, 1, 1; 5, 4, 3, 3, 2, 2, 1, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Programs
-
Mathematica
T[1, 1] := 1; T[n_, 1] := Floor[(n + 2)/2]; T[n_, n_] := 1; T[n_, k_] := Floor[(n - k + 2)/2]; Table[T[n, k], {n, 1, 8}, {k, 1, n}]//Flatten (* G. C. Greubel, Dec 05 2016 *)
Formula
T(1, 1) = 1, T(n, 1) = floor((n + 2)/2), T(n, n) = 1, T(n, k) = floor((n - k + 2)/2). - G. C. Greubel, Dec 05 2016
Comments