cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135841 A000012 * A135839 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 2, 1, 1, 6, 3, 2, 2, 1, 1, 7, 3, 3, 2, 2, 1, 1, 8, 4, 3, 3, 2, 2, 1, 1, 9, 4, 4, 3, 3, 2, 2, 1, 1, 10, 5, 4, 4, 3, 3, 2, 2, 1, 1, 11, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 12, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 13, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Row sums = A024206: (1, 3, 5, 8, 11, 15, 19, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 1, 1;
  4, 2, 1, 1;
  5, 2, 2, 1, 1;
  6, 3, 2, 2, 1, 1;
  7, 3, 3, 2, 2, 1, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[1, 1] := 1; T[n_, 1] := n; T[n_, n_] := 1; T[n_, k_] := Floor[(n - k + 2)/2]; Table[T[n, k], {n, 1, 15}, {k, 1, n}]//Flatten (* G. C. Greubel, Dec 06 2016 *)

Formula

T(1, 1) = 1, T(n, 1) = n, T(n, n) = 1, T(n, k) = floor((n - k + 2)/2). - G. C. Greubel, Dec 06 2016

Extensions

Terms a(56) and beyond from G. C. Greubel, Dec 06 2016