A135852 A007318 * A103516 as a lower triangular matrix.
1, 3, 2, 8, 4, 3, 20, 6, 9, 4, 48, 8, 18, 16, 5, 112, 10, 30, 40, 25, 6, 256, 12, 45, 80, 75, 36, 7, 576, 14, 63, 140, 175, 126, 49, 8, 1280, 16, 84, 224, 350, 336, 196, 64, 9, 2816, 18, 108, 336, 630, 756, 588, 288, 81, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 3, 2; 8, 4, 3; 20, 6, 9, 4; 48, 8, 18, 16, 5; 112, 10, 30, 40, 25, 6; 256, 12, 45, 80, 75, 36, 7; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[n==0, 1, If[k==0, (n+2)*2^(n-1), (k+1)*Binomial[n, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2016 *)
-
Sage
def A135852(n,k): if (n==0): return 1 elif (k==0): return (n+2)*2^(n-1) else: return (k+1)*binomial(n, k) flatten([[A135852(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2022
Formula
T(n, 0) = A001792(n).
Sum_{k=0..n} T(n, k) = A099035(n+1).
T(n, k) = (k+1)*binomial(n, k), with T(n, 0) = (n+2)*2^(n-1), T(n, n) = n+1. - G. C. Greubel, Dec 07 2016
Extensions
Offset changed to 0 by G. C. Greubel, Feb 07 2022
Comments