A135855 A007318 * a tridiagonal matrix with (1, 4, 1, 0, 0, 0, ...) in every column.
1, 5, 1, 10, 6, 1, 16, 16, 7, 1, 23, 32, 23, 8, 1, 31, 55, 55, 31, 9, 1, 40, 86, 110, 86, 40, 10, 1, 50, 126, 196, 196, 126, 50, 11, 1, 61, 176, 322, 392, 322, 176, 61, 12, 1, 73, 237, 498, 714, 714, 498, 237, 73, 13, 1
Offset: 0
Examples
First few rows of the triangle: 1; 5, 1; 10, 6, 1; 16, 16, 7, 1; 23, 32, 23, 8, 1; 31, 55, 55, 31, 9, 1; 40, 86, 110, 86, 40, 10, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A135855:= func< n,k | Binomial(n,k)*(n^2 + (2*k+7)*n - 2*(k^2 + 2*k -1))/((k+1)*(k+2)) >; [A135855(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 06 2022
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, (n^2+7*n+2)/2, If[k==n, 1, T[n-1, k-1] + T[n-1, k]]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2022 *)
-
Sage
@CachedFunction def T(n,k): # A135855 if (k==0): return (n^2+7*n+2)/2 elif (k==n): return 1 else: return T(n-1, k-1) + T(n-1, k) flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 06 2022
Formula
Binomial transform of an infinite tridiagonal matrix with (1, 4, 1, 0, 0, 0, ...) in every column; i.e., (1, 1, 1, ...) in the main diagonal, (4, 4, 4, 0, 0, 0, ...) in the subdiagonal and (1, 1, 1, ...) in the subsubdiagonal.
T(n, 0) = A052905(n).
Sum_{k=0..n} T(n, k) = A101945(n).
From G. C. Greubel, Feb 06 2022: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k), with T(n, n) = 1, T(n, 0) = A052905(n).
T(n, k) = binomial(n,k)*(n^2 + (2*k+7)*n - 2*(k^2 + 2*k -1))/((k+1)*(k+2)).
T(n, 1) = A134465(n).
T(n, 2) = A022815(n-1).
T(n, n-1) = n+3.
T(n, n-2) = A052905(n+2). (End)