cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135855 A007318 * a tridiagonal matrix with (1, 4, 1, 0, 0, 0, ...) in every column.

Original entry on oeis.org

1, 5, 1, 10, 6, 1, 16, 16, 7, 1, 23, 32, 23, 8, 1, 31, 55, 55, 31, 9, 1, 40, 86, 110, 86, 40, 10, 1, 50, 126, 196, 196, 126, 50, 11, 1, 61, 176, 322, 392, 322, 176, 61, 12, 1, 73, 237, 498, 714, 714, 498, 237, 73, 13, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Examples

			First few rows of the triangle:
   1;
   5,  1;
  10,  6,   1;
  16, 16,   7,  1;
  23, 32,  23,  8,  1;
  31, 55,  55, 31,  9,  1;
  40, 86, 110, 86, 40, 10, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A135855:= func< n,k | Binomial(n,k)*(n^2 + (2*k+7)*n - 2*(k^2 + 2*k -1))/((k+1)*(k+2)) >;
    [A135855(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 06 2022
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, (n^2+7*n+2)/2, If[k==n, 1, T[n-1, k-1] + T[n-1, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2022 *)
  • Sage
    @CachedFunction
    def T(n,k): # A135855
        if (k==0): return (n^2+7*n+2)/2
        elif (k==n): return 1
        else: return T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 06 2022

Formula

Binomial transform of an infinite tridiagonal matrix with (1, 4, 1, 0, 0, 0, ...) in every column; i.e., (1, 1, 1, ...) in the main diagonal, (4, 4, 4, 0, 0, 0, ...) in the subdiagonal and (1, 1, 1, ...) in the subsubdiagonal.
T(n, 0) = A052905(n).
Sum_{k=0..n} T(n, k) = A101945(n).
From G. C. Greubel, Feb 06 2022: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k), with T(n, n) = 1, T(n, 0) = A052905(n).
T(n, k) = binomial(n,k)*(n^2 + (2*k+7)*n - 2*(k^2 + 2*k -1))/((k+1)*(k+2)).
T(n, 1) = A134465(n).
T(n, 2) = A022815(n-1).
T(n, n-1) = n+3.
T(n, n-2) = A052905(n+2). (End)