A135876 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms at positions [(m+2)^2/4 - 1] for m>=0 and then taking partial sums, starting with all 1's in row 0.
1, 1, 1, 3, 2, 1, 15, 8, 3, 1, 105, 48, 15, 4, 1, 945, 384, 105, 23, 5, 1, 10395, 3840, 945, 176, 33, 6, 1, 135135, 46080, 10395, 1689, 279, 44, 7, 1, 2027025, 645120, 135135, 19524, 2895, 400, 57, 8, 1, 34459425, 10321920, 2027025, 264207, 35685, 4384, 561
Offset: 0
Examples
Square array begins: (1),(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...; (1),(2),3,(4),5,(6),7,8,(9),10,11,(12),13,14,15,(16),17,18,19,(20),...; (3),(8),15,(23),33,(44),57,71,(86),103,121,(140),161,183,206,(230),..; (15),(48),105,(176),279,(400),561,744,(950),1206,1489,(1800),2171,..; (105),(384),945,(1689),2895,(4384),6555,9129,(12139),16161,20763,..; (945),(3840),10395,(19524),35685,(56448),89055,129072,(177331),245778,...; (10395),(46080),135135,(264207),509985,(836352),1381905,2071215,(2924172),.; (135135),(645120),2027025,(4098240),8294895,(14026752),24137505,...; ... where terms in parenthesis are removed before taking partial sums. For example, to generate row 2 from row 1, remove terms at positions {[(m+2)^2/4-1], m>=0} = [0,1,3,5,8,11,15,19,24,29,35,...] to obtain: [3, 5, 7,8, 10,11, 13,14,15, 17,18,19, 21,22,23,24, 25,26,27,28, ...] then take partial sums to get row 2: [3, 8, 15,23, 33,44, 57,71,86, 103,121,140, 161,183,206,230, ...]. Repeating this process will generate all the rows of the triangle, where column 0 will be the odd double factorials (A001147) and column 1 will be the even double factorials (A000165).
Programs
-
PARI
{T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+2)^2/4)-1, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}
Comments