A135878 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms at positions [(m+3)^2/4 - 2] for m>=0 and then taking partial sums, starting with all 1's in row 0.
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 25, 25, 12, 4, 1, 138, 138, 63, 19, 5, 1, 970, 970, 421, 113, 28, 6, 1, 8390, 8390, 3472, 832, 190, 38, 7, 1, 86796, 86796, 34380, 7420, 1560, 283, 50, 8, 1, 1049546, 1049546, 399463, 78406, 15250, 2502, 411, 63, 9, 1, 14563135, 14563135
Offset: 0
Examples
Square array begins: (1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...; (1),2,(3),4,(5),6,7,(8),9,10,(11),12,13,14,(15),16,17,18,(19),20,...; (2),6,(12),19,(28),38,50,(63),77,93,(110),128,148,169,(191),214,...; (6),25,(63),113,(190),283,411,(559),728,942,(1181),1446,1766,2116,...; (25),138,(421),832,(1560),2502,3948,(5714),7830,10740,(14130),18036,...; (138),970,(3472),7420,(15250),25990,44026,(67112),95918,138343,(189598),..; (970),8390,(34380),78406,(174324),312667,(563287),897471,1329234,2003240,..; (8390),86796,(399463),962750,(2291984),4295224,8168819,(13523882),20656067,.; (86796),1049546,(5344770),13513589,(34169656),66534382,132787852,(227380975),.; (1049546),14563135,(81097517),213885369,(570682050),1149537869,2395865161,..; (14563135),228448504,(1377986373),3773851534,(10568874312),21945438536,...; where terms in parenthesis are removed before taking partial sums. For example, to generate row 2 from row 1, remove terms at positions {[(m+3)^2/4-2], m>=0} = [0,2,4,7,10,14,18,23,28,34,...] to obtain: [2, 4, 6,7, 9,10, 12,13,14, 16,17,18, 20,21,22,23, ...] then take partial sums to get row 2: [2, 6, 12,19, 28,38, 50,63,77, 93,110,128, 148,169,191,214, ...]. Repeating this process will generate all the rows of the triangle. Triangle A135880 begins: 1; 1, 1; 2, 2, 1; 6, 7, 3, 1; 25, 34, 15, 4, 1; 138, 215, 99, 26, 5, 1; 970, 1698, 814, 216, 40, 6, 1; ... and is generated by matrix powers of itself.
Programs
-
PARI
{T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+3)^2/4)-2, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}
Comments