cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135878 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms at positions [(m+3)^2/4 - 2] for m>=0 and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 25, 25, 12, 4, 1, 138, 138, 63, 19, 5, 1, 970, 970, 421, 113, 28, 6, 1, 8390, 8390, 3472, 832, 190, 38, 7, 1, 86796, 86796, 34380, 7420, 1560, 283, 50, 8, 1, 1049546, 1049546, 399463, 78406, 15250, 2502, 411, 63, 9, 1, 14563135, 14563135
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2007

Keywords

Comments

Column 0 is A135881 which equals column 0 of triangle A135879 and also equals column 0 of triangle A135880. Compare to triangle A135879, which is generated by a complementary process. An interesting variant is square array A135876, in which column 0 equals the double factorials (A001147).

Examples

			Square array begins:
(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...;
(1),2,(3),4,(5),6,7,(8),9,10,(11),12,13,14,(15),16,17,18,(19),20,...;
(2),6,(12),19,(28),38,50,(63),77,93,(110),128,148,169,(191),214,...;
(6),25,(63),113,(190),283,411,(559),728,942,(1181),1446,1766,2116,...;
(25),138,(421),832,(1560),2502,3948,(5714),7830,10740,(14130),18036,...;
(138),970,(3472),7420,(15250),25990,44026,(67112),95918,138343,(189598),..;
(970),8390,(34380),78406,(174324),312667,(563287),897471,1329234,2003240,..;
(8390),86796,(399463),962750,(2291984),4295224,8168819,(13523882),20656067,.;
(86796),1049546,(5344770),13513589,(34169656),66534382,132787852,(227380975),.;
(1049546),14563135,(81097517),213885369,(570682050),1149537869,2395865161,..;
(14563135),228448504,(1377986373),3773851534,(10568874312),21945438536,...;
where terms in parenthesis are removed before taking partial sums.
For example, to generate row 2 from row 1, remove terms at positions
{[(m+3)^2/4-2], m>=0} = [0,2,4,7,10,14,18,23,28,34,...] to obtain:
[2, 4, 6,7, 9,10, 12,13,14, 16,17,18, 20,21,22,23, ...]
then take partial sums to get row 2:
[2, 6, 12,19, 28,38, 50,63,77, 93,110,128, 148,169,191,214, ...].
Repeating this process will generate all the rows of the triangle.
Triangle A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
and is generated by matrix powers of itself.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+3)^2/4)-2, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}