cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135879 Triangle, read by rows of A135901(n) terms, where row n+1 is generated from row n by inserting zeros at positions [(m+3)^2/4 - 2], as m=0,1,2,3,... and then taking partial sums from right to left, starting with a single 1 in row 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 6, 6, 4, 4, 2, 2, 1, 25, 25, 19, 19, 13, 13, 9, 5, 5, 3, 1, 1, 138, 138, 113, 113, 88, 88, 69, 50, 50, 37, 24, 24, 15, 10, 5, 5, 2, 1, 970, 970, 832, 832, 694, 694, 581, 468, 468, 380, 292, 292, 223, 173, 123, 123, 86, 62, 38, 38, 23, 13, 8, 3, 3, 1, 8390
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2007

Keywords

Comments

Column 0 is A135881 which equals column 0 of square array A135878 and also equals column 0 of triangle A135880. Compare to square array A135878, which is generated by a complementary process. An interesting variant is triangle A135877 in which column 0 equals the double factorials (A001147).

Examples

			Triangle begins:
1;
1, 1;
2, 2, 1, 1;
6, 6, 4, 4, 2, 2, 1;
25, 25, 19, 19, 13, 13, 9, 5, 5, 3, 1, 1;
138, 138, 113, 113, 88, 88, 69, 50, 50, 37, 24, 24, 15, 10, 5, 5, 2, 1;
970, 970, 832, 832, 694, 694, 581, 468, 468, 380, 292, 292, 223, 173, 123, 123, 86, 62, 38, 38, 23, 13, 8, 3, 3, 1;
8390, 8390, 7420, 7420, 6450, 6450, 5618, 4786, 4786, 4092, 3398, 3398, 2817, 2349, 1881, 1881, 1501, 1209, 917, 917, 694, 521, 398, 275, 275, 189, 127, 89, 51, 51, 28, 15, 7, 4, 1, 1;
There are A135901(n) number of terms in row n.
To generate the triangle, start with a single 1 in row 0,
and then obtain row n+1 from row n by inserting zeros at
positions {[(m+3)^2/4 - 2], m=0,1,2,...} and then
taking reverse partial sums (i.e., summing from right to left).
Start with row 0, insert a zero in front of the '1' at position 0:
[0,1];
take reverse partial sums to get row 1:
[1,1];
insert zeros at positions [0,2]:
[0,1,0,1];
take reverse partial sums to get row 2:
[2,2,1,1];
insert zeros at positions [0,2,4]:
[0,2,0,2,0,1,1];
take reverse partial sums to get row 3:
[6,6,4,4,2,2,1];
insert zeros at positions [0,2,4,7]:
[0,6,0,6,0,4,4,0,2,2,0,1];
take reverse partial sums to get row 4:
[25,25,19,19,13,13,9,5,5,3,1,1];
insert zeros at positions [0,2,4,7,10,14]:
[0,25,0,25,0,19,19,0,13,13,0,9,5,5,0,3,1,1];
take reverse partial sums to get row 5:
[138,138,113,113,88,88,69,50,50,37,24,24,15,10,5,5,2,1].
Triangle A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
and is generated by matrix powers of itself.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[]; for(j=1,#A,if(j+m-1==floor((m+2)^2/4)-1,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));if(k+1>#A,0,A[k+1])}